
Photran-CDT Compatibility Feature

This material is partly based upon work supported by the Defense Advanced Research Projects Agency under its
Agreement No. HR0011-07-9-0002.

Table of Contents
Summary.. 2
Architecture..2
Implementation Notes..3

Extending Photran...3
DOM (Heavyweight AST).. 4
Open Fortran Parser (OFP)... 7
Scoping, Binding Resolution, and Module Loading...9
PDOM... 10
Model (Lightweight AST)...12
PLDT Integration.. 12

Problems and Future Work.. 13
Open Fortran Parser.. 13
C Preprocessor.. 14
DOM (Heavyweight AST).. 15
Scoping, Binding Resolution, and Module Loading...15
PDOM... 16
Editor/UI Integration...17

Conclusions..17

Jeffrey Overbey
(overbey2@illinois.edu)
Summer Intern, IBM Research
August, 2008

1

Summary
This document describes a prototype CDT-compatible program
representation and infrastructure for Fortran. The program representation
consists of a heavyweight abstract syntax tree (AST) based on the CDT
DOM, a lightweight AST (“model”) based on the CModel, and a cross-
reference database based on the CDT PDOM. The prototype uses the
Open Fortran Parser to build both the DOM and the model, although a
DOM builder based on Photran's existing AST and program database is
included as well, as is a small sample illustrating how to use the PDOM to
support loading and storing information about Fortran modules.

Architecture
The prototype CDT Compatibility feature is based on Photran 4.0 beta 4,
CDT 5.0, and Eclipse 3.4 and requires a Java 1.5 compiler.

The CDT Compatibility Feature consists of the following Eclipse projects.

● org.eclipse.photran.cdtcompatibility-feature
Eclipse feature comprised of the following plug-ins.

● org.eclipse.photran.cdtcompatibility-dev-docs
Contains this document and the notes/progress reports from which
it was compiled.

● org.eclipse.photran.cdtcompatibility.core
Contains DOM, PDOM, and CModel classes for Fortran.
(These do not and should not depend on any particular parser.)

● org.eclipse.photran.cdtcompatibility.core.ofp
Contains the Open Fortran Parser (OFP) and contributes a DOM
builder and model builder based on OFP.

● org.eclipse.photran.cdtcompatibility.core.vpg
Contributes a DOM builder which uses Photran's existing AST and
indexer to build a (CDT-compatible) DOM. This was developed as
a proof-of-concept and is not intended to be completed.

● org.eclipse.photran.cdtcompatibility.core.tests

JUnit tests for the Open Fortran Parser. Eventually, this should
c o n t a i n D O M t e s t s a s w e l l .

2

● org.eclipse.photran.cdtcompatibility.ui
Contributes the Fortran DOM AST view and a Find Module action.

Implementation Notes

Extending Photran

Mechanism

The CDT Core (essentially the model, AST, and indexer) can be extended
to support new languages via an extension point. Extensions provide (1) a
list of platform content types supported by that language, (2) a model
builder, and (3) a DOM parser. Photran contributes to this extension point
via the cdtinterface plug-in; however, this plug-in, in turn, provides an
extension point through which a Fortran model builder and DOM parser
may be contributed. Photran's extension point also allows a reconciler to
be contributed to the Fortran editor.1

Photran's refactoring-centric language infrastructure (the VPG, or Virtual
Program Graph) is included in the core.vpg and ui.vpg plug-ins; these
contribute a model builder and a reconciler but not a DOM parser. (The
reconciler provides the Fortran editor with content assist and
synchronization with the Fortran Declaration view.)

The CDT Compatibility Feature provides a model builder and DOM
parser via the language extension point but currently does not provide a
reconciler.2 (See plugin.xml in the core.ofp plug-in.)

Usage

When both the VPG and
CDT Compat ib i l i ty
features are installed,
Photran allows the user
to choose which model
builder and DOM parser

1 Photran's architecture is described in detail in the Photran Developer's Guide, which is linked from the
Contributor Info page on Photran's Web site.

2 Photran's existing parser and program representation , as well as UI contributions and editor features
based on these, are entirely contained in two plug-ins which are separate from the rest of Photran.
Although it is desirable for the existing representation and the CDT-compatible representation to coexist
(as they do now), it is possible to build Photran with either omitted.

3

to use via the Fortran > CDT Integration category in the workspace
preferences.

DOM (Heavyweight AST)

CDT's full abstract syntax tree (AST) is also known as the DOM
(à la XML). The structure of a DOM is implicitly defined by the
interfaces in the org.eclipse.cdt.core.dom.ast package. All DOM nodes are
expected to implement IASTNode; IASTTranslationUnit is the root of the
DOM; there are several interfaces such as IASTDeclaration,
IASTStatement, and IASTExpression which are particularly useful for
defining Fortran constructs that have no analog in C or C++; and there are
many other node types (e.g., IASTDoStatement, IASTCastExpression)
which are much more C/C++-specific.

DOM Design

There are two competing forces in developing a CDT-compatible DOM
for Fortran.

On one hand, code already written for CDT generally expects a DOM to
represent a C/C++ program; this is implicit in the assumptions that are
made about the syntactic and lexical structure of the program (e.g.,
functions are not nested, identifiers are case-sensitive and space-free) as
well as its semantics (e.g., all identifiers are declared before use).
Superficially, it appears that this code will be reusable by building a C/C+
+ DOM which approximates a Fortran program. For example, CDT is
able to semantically highlight UPC forall loops because they are
represented as for loops in the DOM.

On the other hand, the purpose of an AST (DOM) is to represent the
syntactic structure of the program. A proper AST for Fortran will provide
Fortran-specific constructs (like modules, common blocks, and I/O
statements) their own node types.

The DOM in the CDT Compatibility feature generally follows the latter
approach. Fortran and C/C++ are very different languages. Many Fortran
constructs have no reasonable analog in C or C++ (e.g.,
implicit statements, implied do loops, nested procedures, intrinsic
declarations, variable kinds, common blocks, block data subprograms,
computed gotos, keyword parameters, and where statements, among many
others). In these cases, building a 100% C/C++-compatible DOM would

4

essentially amount to building a Fortran-to-C/C++ compiler, and even then
the DOM would contain nodes with no corresponding source code while
some regions of source code would be mapped to several DOM nodes.
The utility of this data structure for static analysis would be limited (e.g.,
consider computing flow information from a serial C/C++ approximation
of Fortran's where statement or array sections or computing binding
information based on an approximation of nested procedures), while the
DOM would be utterly useless as a Fortran-specific program
representation due to all of the syntactic and semantic information that
would be lost in translation.

In general, the Fortran DOM implements CDT DOM interfaces (and
occasionally subclasses CDT DOM node implementations) at the lowest
level where it is appropriate. For example, IFortranSubprogram
implements IASTFunctionDefinition since a Fortran subprogram
definition directly obeys the the syntactic contract of a C/C++ function
definition,3 while IFortranPrintStmt implements only the high-level
IASTStatement interface since there is nothing equivalent to a
print statement in C/C++.

Fortran DOM Nodes

A very incomplete set of (demonstration) Fortran DOM nodes is located in
the cdtcompatibility.core plug-in. The externally-visible interfaces of
F o r t r a n D O M n o d e s a r e d e f i n e d i n t h e
org.eclipse.photran.cdtcompatibility.core.dom package; implementations
not intended for public consumption are contained in the
org.eclipse.photran.cdtcompatibility.internal.core.dom package. Every
Fortran DOM node is expected to implement IFortranASTNode (which, of
course, subclasses CDT's IASTNode).

Currently, DOM nodes have only been implemented for some high-level
organizational/scoping constructs (main programs, subprograms, modules,
and block data subprograms), c a l l a n d print statements, and some
expressions (unary, binary, identifiers, and literal expressions).

3 This may change. In every case – the DOM, the PDOM, and model – the Fortran implementation
started by reusing CDT classes frequently. However, as more pieces were developed and more Fortran
specifics were needed, it became necessary to either subclass CDT classes or simply build entirely new
objects which implemented the same interfaces. Whether a C/C++ node is a “good enough”
approximate representation of a Fortran construct depends on what that node is being used for. This is
true of AST design in general: An AST for a Fortran compiler could omit many declaration statements,
for example, while a Fortran AST for an IDE or refactoring tool probably would not.

5

DOM Builders

Two DOM builders have been prototyped. (Again, the one to use may be
selected in the workspace preferences.) These are implemented in plug-
ins separate from the DOM nodes themselves; note that parser-specific
classes (e.g., Token) are used only in the DOM builders,
not in the DOM node interfaces or implementations.

A first implementation of a Fortran DOM builder is contained in the
cdtcompatibility.core.vpg plug-in: It uses Photran's existing AST and
indexer to construct a DOM. This was used for prototyping the DOM and
is not intended to be completed or maintained.

The main implementation (in the cdtcompatibility.core.ofp plug-in) uses
the Open Fortran Parser to construct a DOM. Its implementation is not
immediately obvious and is described in more detail in the next section
(“Open Fortran Parser”).

Visitors

All DOM nodes (i.e., objects implementing IASTNode) implement an
#accept(IASTVisitor) method which allows them to be traversed using a
variant of the Visitor design pattern.

The cdtcompatibi l i ty.core plug-in contains a ut i l i ty class
(UniformCDTASTVisitor) which can be used to implement a Visitor that
treats every type of DOM node identically.

When traversing a Fortran DOM, it is often preferable to subclass
FortranASTVisitor: This class contains a callback method for each type of
node in a Fortran DOM.

Prettyprinting and the Fortran DOM AST View

Two means are provided to assist with debugging and testing the Fortran
DOM.

The Fortran DOM AST View (in the cdtcompatibility.ui plug-in) is copied
and from the CDT's DOM AST View and modified slightly to support the
Fortran DOM. However, it is not very reliable: CDT's DOM AST View
code is not particularly well-written and is very specific to CDT's C/C++
DOM, so, consequently, the Fortran DOM AST view does not always
produce the “correct” display.

6

A more reliable depiction of the Fortran DOM is provided by the
FortranPrettyPrinter class, which prettyprints source code from the DOM.
(Note that the FortranPrettyPrinter is intended to be a simplest-possible
implementation that can be used for testing and debugging only; it is not
intended to be a production prettyprinter or code formatter.)

DOM Testing

The prototype CDT Compatibility feature contains almost no code for
testing the DOM, although comprehensive testing will be critical for a
full-scale DOM implementation. Fully testing the DOM will involve

1. identifying the contexts in which a particular node should appear,
constructing programs accordingly, and ensuring that the
appropriate node exists in the DOM;

2. testing accessor methods for DOM nodes, ensuring that all
necessary information about a construct is publicly-visible;

3. testing connectivity, ensuring that parent-child relationships are 1-1
among DOM nodes; and

4. testing the Visitor mechanism, ensuring that every node is visited
in the correct order and that the CDT's extensive set of visitor
controls (e.g., boolean returns and the many shouldVisitXYZ
fields) are observed appropriately.

Open Fortran Parser (OFP)

JAR

The Open Fortran Parser is contained in ofp.jar in the root of the
cdtcompatibility.core.ofp plug-in. Inside the build folder, there is an Ant
script (create-ofp-jar.xml) which will build this jar by checking out the
OFP sources from the SourceForge repository, compiling them, and then
bundling the result.

Note that OFP is continually under development, and so the jar must be
rebuilt using the Ant script for modifications in OFP to be reflected in the
CDT Compatibility feature.

7

Tests

A large suite of JUnit tests for OFP (adapted from similar tests for
Photran's parser) is located in the cdtcompatibility.core.tests plug-in.
These tests simply parse Fortran programs and ensure that a non-null AST
is returned.

T h e b a s e s e t o f t e s t F o r t r a n c o d e s i s l o c a t e d i n t h e
org.eclipse.photran.core.vpg.tests plug-in. Several other codes (including
POP, IBEAM, FMLIB, LAPACK, and the IBM XL Fortran 12.1 test suite)
are not available in public CVS; tests for these codes will fail silently if
they are not present.4

The four base classes in org.eclipse.photran.internal.core.tests are copied
from identically-named classes for Photran's parser and modified to use
OFP and return a DOM instead. The test classes in the
org.eclipse.photran.internal.core.tests.a_parser package are all
copied verbatim from the same package in Photran's core.vpg.tests plug-
i n ; h o w e v e r , s i n c e t h e s e c o p i e d a r e l o c a t e d i n t h e
cdtcompatibility.core.tests plug-in, they use the four base classes described
above and so function as tests for OFP rather than Photran's parser.

DOM Building

The Open Fortran Parser was designed to support arbitrary semantic
actions. The IFortranParserAction interface has one callback method
corresponding to each rule in the grammar; OFP can be given an arbitrary
object implementing this interface, and the corresponding actions will be
called as grammar rules are matched.

However, these actions must be implemented using a stack-based model.
Each callback method is expected to push objects onto a stack; subsequent
method calls should pop these objects based on parameters supplied to the
the callback methods. For example, suppose the callback for expressions
(“expr”) pushes an ExpressionNode object on the stack. Now, suppose
that this expression is used in the context of a named constant definition.
According to OFP's ANTLR grammar, FortranParser.g,

4 All of these except for the XLF test suite are available in a private CVS repository; contact the author
for access information.

8

// R539
named_constant_def

: T_IDENT T_EQUALS expr
{action.named_constant_def($T_IDENT);}
;

the named_constant_def callback method will be invoked, and the
identifier token will be passed to it as a parameter. This ExpressionNode
object must be popped from the stack.

Unfortunately, IFortranParserAction contains 486 methods, and it is
difficult (if not impossible) to maintain a “correct” stack when some
methods have been implemented but others have not (e.g., if one method
pushes an object onto the stack but the corresponding method that should
pop it has not been implemented).

To remedy this, the OFP DOM builder attempts to use a more familiar
attribute grammar model, but it does so by building on top of OFP's stack-
based model. Here, there is one stack for each nonterminal in the
grammar. The callback method for a particular grammar rule should push
a DOM node for the nonterminal on i t s l e f t -hand s ide
(or some object, such as a String or Integer, that will later be incorporated
into a DOM node). For example, the grammar rule

// R313
// ERR_CHK 313 five characters or less
label returns [Token tk]
 : T_DIGIT_STRING
 { tk = $T_DIGIT_STRING;
 action.label($T_DIGIT_STRING); };

is given the following callback method.

/** R313 */
public void label(Token lbl) {
 attr.pushFragment(AttrKey.label,
 Integer.parseInt(lbl.getText()));
}

Scoping, Binding Resolution, and Module Loading

Like many IDEs, rather than using symbol tables (as one would find in a
compiler), CDT's scoping/binding resolution is based the AST: Some AST
n o d e s (e . g . , f u n c t i o n d e f i n i t i o n s) h a v e a n a s s o c i a t e d
scope (an object implementing IScope), and each scope contains a
collection of bindings. Every scope has a name and a parent scope (except

9

the AST root – a translation unit – whose parent scope is null).

CDT's code for scoping and binding resolution is contained mostly in
static methods in the CVisitor class. This code is very dependent on the
structure of the DOM (note the number of instanceof tests) and so is not
reusable for Fortran. (The scoping/binding rules for C/C++ and Fortran
are different anyway.)

A sample scope and three sample bindings for Fortran have been
implemented. The public interfaces are IFortranScope and
IFor t r anBind ing ; the implementa t ions a re For t r anScope ,
F o r t r a n I m p l i c i t B i n d i n g , F o r t r a n M o d u l e B i n d i n g , a n d
FortranSubprogramBinding. Scopes are associated with translation units,
block data subprograms, modules, main programs, and subprograms
(functions and subroutines). Bindings are assigned to the identifiers in
module and subprogram definitions when the corresponding DOM nodes
are created. Currently, every u s e o f a n identifier is assigned a
FortranImplicitBinding (although this is incorrect – it was done simply to
make the PLDT MPI artifact visitor work, cf. below); a full
implementation would obviously need to resolve identifiers to the
subprogram/variable/etc. that they actually reference in a manner
conceptually similar to CVisitor.

PDOM

The CDT's PDOM (Persistable DOM) maintains a collection of scopes
and definitions in each file and (when used as a C/C++ indexer) is updated
incrementally in response to changes to workspace resources.

Linkage Association

Each language supported by CDT is associated with a PDOM
linkage; this association is currently specified in four places:

1. FortranASTTranslationUnit#getLinkage

2. FortranASTName#getLinkage

3. FortranSubprogramBinding#getLinkage

4. FortranLanguage#getLinkageID

10

As additional bindings (other than FortranSubprogramBinding) are added
to the PDOM, the linkage will be specified there as well.

The linkage is contributed to CDT via the org.eclipse.cdt.core.language
extension point.

Linkage Implementation

Fortran's PDOM linkage is defined in the class PDOMFortranLinkage,
which is based on CDT's PDOMCLinkage class.

The types of symbols that may be stored in the PDOM are

1. given an integer constant in the IIndexFortranBindingConstants
interface,

2. i m p l e m e n t e d a s a c l a s s i n t h e
org.eclipse.photran.cdtcompatibility.internal.core.pdom package
(see PDOMFortranModule and PDOMFortranVariable for
examples), and

3. serialized/deserialized in PDOMFortranLinkage (#addBinding
serializes, #getNode deserializes).

The method PDOMFortranLinkage#adaptBinding is not necessary for the
small Fortran PDOM prototype will likely be more useful in a full
implementation: It should convert between DOM bindings and PDOM
bindings. See PDOMCLinkage for example code.

PDOM Binding Implementation

Two sample Fortran PDOM bindings have been implemented. These are
supposed to be illustrative only: Much of their code has been copied from
similar CDT classes, although this should be avoided in a full
implementation.

PDOMFortranVariable is a simple binding largely copied from
PDOMCVariable.

PDOMFortranModule is more complex, as a module is a binding which
also doubles as a scope for other bindings.

Note that every binding has a scope, and the “outermost” bindings in a

11

translation unit have the PDOMFortranLinkage object itself as their scope.
Every binding also has a name and may also have additional fields
(representing the type or other attributes of the symbol being defined).

Viewing the PDOM

The Fortran PDOM (treated as a C/C++ Index) may be viewed in the
C/C++ Index View.

Model (Lightweight AST)

The CDT Compatibility feature also contains an (incomplete) OFP-based
model builder and model elements for Fortran. These are contained in the
model folders in the core and core.ofp plug-ins; new (contributed) model
elements are mapped to their corresponding images via an array at the top
of the class org.eclipse.photran.cdtcompatibility.internal.ui.Activator.
The model builder resembles the DOM builder, and the model elements
resemble DOM nodes, although their type hierarchies (and purposes) are
different. These will not be described in detail here; more information
about building CDT model builders and model elements is availabe in the
following paper:

J. Overbey and C. Rasmussen, “Instant IDEs: Supporting New Languages
in the CDT,” Eclipse Technology eXchange Workshop at OOPSLA 2005,
San Diego, CA, October 17, 2005.
http://jeff.over.bz/papers/2005/instant-ides.pdf

PLDT Integration

An additional project (org.eclipse.ptp.pldt.mpi.core.photran) contains two
implementations of PLDT's Find MPI Artifacts action. One
(PhotranVPGMPIAnalysis) is based on Photran's existing program
representation; the other (PhotranDOMMPIAnalysis) is based on the
CDT-compatible DOM. Currently, the VPG-based analysis is more
accurate, since the VPG is a complete AST and contains binding
information, but the DOM-based analysis is a useful demonstration of
what can be done with the CDT-compatible DOM. In particular, the inner
class in PhotranDOMMPIAnalysis (MpiFortranASTVisitor) is nearly
identical to MpiCASTVisitor.

If the user selected a Fortran DOM builder in the workspace preferences

12

(see above), the DOM-based analysis will be used; if no DOM builder was
selected, or if the DOM parser fails, the VPG-based analysis will be used
instead. (See the class PhotranMPIAnalyzer.)

Problems and Future Work

Open Fortran Parser

● Parser Bugs. As of 6/6/08, OFP fails 65 of Photran's 3485 unit
tests, 72 of 1936 tests in a sample of the XLF 12.1 test suite, and
crashes the JUnit test runner when attempting to run the full test
suite. (The last attempt completed 14660/62860 runs with 9659
failures.)

● Design. OFP, in particular its FrontEnd (the parser entrypoint), is
intended for command line use and needs to be modified for use in
Eclipse. In particular,

○ Errors should be handled by a callback, not printed to stderr.

○ INCLUDE line processing should be handled by a callback,
and include directories should be configurable from the project
properties (perhaps they should be the same as the include
directories configured for CDT's C preprocessor).

○ The fixed/free-form test should be based on Eclipse content
types, not filename extensions.

○ OFP is very tied to Java File objects and subclasses
ANTLRFileStream. However, its input should be an arbitrary
Reader or InputStream, not necessarily a File. This is critical
for parsing the active editor's (unsaved) content (e.g., for the
Outline view) and for parsing files that do not exist on the local
filesystem. Furthermore, INCLUDEd files may not exist on
the local filesystem and may need to be treated as Eclipse IFile
objects instead.

○ ANTLR Tokens do not contain line/column information.

○ As discussed earlier, the stack-based programming model can
be somewhat confusing and error-prone, even with an attribute
grammar model built on it, due to the size of the Fortran

13

grammar and the number of actions involved. Whether, and
how, this can be improved should be open for discussion.

● Action Bugs. In the course of implementing a few DOM nodes,
the following bugs were found and posted to the fortran-parser-
devel list at SourceForge.

○ Need a callback method for R1231 (subroutine_subprogram)

○ R208 (execution_part) needs count parameter for
execution_part_construct

○ R429 (derived_type_def) needs count for private_or_sequence,
component_def_stmt, type_bound_procedure_part

○ R705 (add_operand) needs flag for initial add_op

○ R1107 (module_subprogram_part) needs count for
module_subprogram

● Efficiency. FMLIB/FM.F90 (37 KLOC) takes 2563 ms to parse
with no parser action and 3563 ms with a DOM building action.
Whether this is acceptable, and how to improve the speed if it is
not, should be discussed.

C Preprocessor

OFP will eventually need to be integrated with a C preprocessor, perhaps
the one in CDT. This effort is currently (8/2008) underway at UIUC, but it
is not complete.

CDT's preprocessor operates quite directly as defined in the C Language
Spec, which means that it doubles as a tokenizer for CDT. Its output is
(essentially) a stream of Token objects which are consumed by the C/C++
parser. On the contrary, most Fortran programs assume that the
preprocessor outputs a stream of text (similar to gcc -E). The only real
difference between the two – and perhaps the biggest problem for Fortran
– is that all information about spacing and line endings is disposed of by
CDT's preprocessor. Losing newlines is a problem since they are used to
terminate statements in Fortran. Losing spaces is a problem particularly in
cases like “.true.”, which is a single token in Fortran but three tokens in C.

Based on a fairly brief and superficial scan of the CDT preprocessor code,

14

modifying it to be able to retain spaces and newlines will likely require

1. modifying CDT's Token class to include preceding whitespace (or
something like this),

2. modifying the Lexer class to track these tokens, and

3. modifying MacroDefinitionParser, ObjectStyleMacro, and
MacroExpander to include whitespace in their output.

DOM (Heavyweight AST)

● Remaining DOM nodes, semantic actions, and tests.
376 semantic actions remain to be filled in, along with the
corresponding DOM nodes, interfaces, prettyprinter methods, and
tests. Again, proper testing will be critical.

● Semantic Checks. It should be noted that some amount of
semantic analysis will likely be necessarily to have a “useful”
Fortran front end. For example, whether F(3) indicates a function
call or an array reference must be determined semantically, as must
the body comprising a loop of the form “DO 10 I...” which
references a statement label.

● DOM AST View. A separate Fortran DOM AST View was created
because CDT's DOM AST view is not compatible with the Fortran
DOM: There are many instanceof tests, the DOM is expected to
have a C-language structure (e.g., no nested subroutines), and the
search to populate this view uses offset/length information to
determine parenting rather than the actual pointer structure of the
tree. The problems discovered while attempting to populate the
DOM AST View with a Fortran DOM may be predictive of more
problems integrating a non-C/C++ DOM with existing CDT code.

Scoping, Binding Resolution, and Module Loading

● Implement binding resolution. As mentioned above, every
identifier use is current assigned a FortranImplicitBinding
(although this is incorrect); a full implementation obviously needs
to resolve identifiers to the subprogram/variable/etc. that they
actually reference in a manner conceptually similar to CVisitor
(but specific to the Fortran DOM and Fortran's scoping rules).

15

Note that several constructs will need careful design consideration,
including implicitly-declared variables, interface blocks, module
uses, and common blocks. Photran's code for collecting and
resolving bindings on its existing AST is contained in the core.vpg
plug-in and follows a model similar to CDT's (i.e., certain AST
nodes double as scopes and contain a collection of bindings); this
code may be used for reference when implementing binding
resolution on the DOM.

● Module loading. One unique and challenging aspect of binding
resolution in Fortran is modules. Modules can be
imported by name; moreover, only a subset of a module's contents
can be imported, and imported entities can be renamed in the
importing scope. In a compiler, it is the user's responsibility to
ensure that files are compiled in a correct order based on these
dependencies among modules; as each file is compiled, .mod files
are generated, which store the contents of modules in a persistable
form. In an IDE, the user generally would not be expected to
provide such a list of dependencies; it would need to be computed
automatically. One possibility is the following. As each file is
indexed, modules are added to the PDOM by name (analogous to
what a compiler would store in a .mod file). Binding resolution is
done on demand; that is, when the indexer runs, only definitions
are collected, and identifier uses are not resolved to their
corresponding definitions until this is explicitly requested. When a
binding resolution is requested (presumably after indexing has
completed), USE statements can be processed and the required
modules loaded from the PDOM to complete the binding
resolution. (See the FindModuleAction class for the basic
structure of code for locking and querying the PDOM.) Based on
Photran's existing implementation and similar code in gfortran, this
is likely to require 5000-8000 LOC.

PDOM

● CDT does not parse Fortran l inkage by default .
This was posted as a CDT bug (Eclipse Bugzilla 242607).
Although there is a Fortran linkage declared in CDT,
AbstractIndexerTask#runTask does not process it (one line must be
added to do so). Without this change, Fortran files do not get
indexed, and thus the Fortran PDOM is never populated.

16

Editor/UI Integration

● Outine view does not appear to update. This is due to the fact
that OFP can only process Java File objects and therefore cannot
handle the editor's (unsaved) buffer; see above.

● CDT views and DOM/PDOM-based editor features need to be
integrated. We looked carefully at the possibility of subclassing
the CEditor to get these features “for free,” but that does not
appear to be feasible at this time: The C editor is very much tied to
C/C++ and would need significant changes to support languages
substantially different from C/C++.

From Chris Recoskie (regarding how UPC is supported in the
editor):

Syntax highlighting for UPC is a combination of CDT 5's semantic
highlighting support and the keyword map; "partitions he more or
less got for free as the new AST node types extend from existing
ones" ... "so a upc_forall just looks like a for loop as far as most of
CDT is concerned"

From Mike Kucera:

I agree, I don't think the C editor is ready to support Fortran. In
some cases it doesn't even differentiate between C and C++. For
example if you open a plain C file and type "class" then invoke
content assist you will get template proposals for C++ classes. C
partition types are used directly all over the place. It would
probably be necessary to add extension points for a lot of things
like the semantic highlighter.

Conclusions
Although it will require a significant amount of work, it appears feasible
to implement a language infrastructure for Fortran based on the DOM,
PDOM, and the Open Fortran Parser. Although this requires CDT internal
classes, no significant changes to CDT are required.

17

	Summary
	Architecture
	Implementation Notes
	Extending Photran
	Mechanism
	Usage

	DOM (Heavyweight AST)
	DOM Design
	Fortran DOM Nodes
	DOM Builders
	Visitors
	Prettyprinting and the Fortran DOM AST View
	DOM Testing

	Open Fortran Parser (OFP)
	JAR
	Tests
	DOM Building

	Scoping, Binding Resolution, and Module Loading
	PDOM
	Linkage Association
	Linkage Implementation
	PDOM Binding Implementation
	Viewing the PDOM

	Model (Lightweight AST)
	PLDT Integration

	Problems and Future Work
	Open Fortran Parser
	C Preprocessor
	DOM (Heavyweight AST)
	Scoping, Binding Resolution, and Module Loading
	PDOM
	Editor/UI Integration

	Conclusions

