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The Open64 Compiler
• A robust suite of open source optimizing compiler tools for 

Linux/Intel  IA-64 systems. It’s in public domain.
– Originally developed by SGI, and currently maintained by Hewlett-Packard. 

Other companies have Open64-based products.
– Full support for F95/F90/F77, C, C++.
– State-of-the-art analysis and optimizations.

• Our branch of Open64 is called OpenUH:
– Supports OpenMP 2.0 and optimizations, 
– Improved source-to-source  capabilities
– Tools interfaces, export static analysis,  performs instrumentation, 

runtime library include performance monitoring.
– Supports automatic parallelization.



Integration Efforts
Open64 from
Hewlett Packard

Pathscale Compiler

OpenUH

Source-to-Source
Berkley UPC 

Interfaces TAU,
KOJAK,  Perfsuite, 

ECLIPSE/PTP
plugins

OpenMP, Language Extensions, 
Analysis,  Modeling

http:www.cs.uh.edu/~openuh



Open64 Analysis Infrastructure

Portable components

Fortran Front End
Semantic  Analysis

Error Checking
High Level  Source 

Structure

C /C++ Front End
Semantic  Analysis

Error Checking
High Level  Source Structure

Source-to Analysis
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Array Data Flow
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WOPT
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Dead code Elimination
Alias Analysis
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Instrumentator
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Instrumentation
Automatic Instrumentation

Code Generation
Pipelining

Register Allocation
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Tools Interfaces 
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Optimized 
Source code
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.mp
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Compiler Plug-in
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How compiler analysis can help:

• Be a source of information for the application 
developer.

• Provide the infrastructure to support 
development/optimization environments: 
– Semantic Error/Checkers
– Refactoring Tools
– Modeling Tools 
– Assist the creation of parallel code (e.g. OpenMP, Hybrid 

MPI/OpenMP code)

• Support work of other tools. 



Example: Dragon Analysis Tools. 
• Callgraph, Control Flow 

Graph, Dependence 
Analysis.

•Interprocedural Analysis:
Variable Usage For Arrays

•Cost Modeling Information 

• Detects Expensive 
Procedures

•Detect Load Imbalances
(MPI/OpenMP)

Depen
dence 
Analysi
s



Program Transformations

1:   program test
2:      real a(1100),b(1100),c(1100)
3:      do j=3,1000
4:      do i=2, 1100 ,1
5:        a(i) = b(i) + c(i)
6:      enddo
7:      do i=2, 1100 ,1
8:        b(i) = a(i) + c(i)
9:      enddo
10:    enddo
11:   write(*,*) a(500)
12:   end program

Hierarchical Representation of Program 

Source Code

Optimization Logs 
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Optimized 
Source Code



Initial Plug-in for PTP 1.1
Tool Chain plug-in for OpenUH/Open64.

Flags Classification
More than 120 
Flags Available.



Major Challenges
• Portability to support all Eclipse/PTP users. 
• Interactions with tools can be complicated   

(e.g. IR-to-IR mappings, two-way interactions)

• No standard intermediate representation
• No standard format represents output of analyses
• Mappings of analyses to the source code has to be 

maintained.
• Provide analysis in an intuitive way to the user.

(e.g. scalability is a problem)



Conclusions

• We have began to move our compiler to 
Eclipse/PTP

• Focus so far: 
• Exporting analyses
• Making it easy to invoke the compiler 
• Defining interfaces with PTP/other tools

• Many standard interfaces seem to be needed.



Questions?



Example: Conversion to
Program Database Representation
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Integrated Tunning Enviroment
Low-Level Trace Data

High Level Profile/ 
Performance  Problem Analyzer

Development Environment 
for MPI/OpenMP
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Dragon Program Analysis Results
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Compiler
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