
Integrating Compilers to
Support Application

Development & Optimization in
Eclipse /PTP

University of Houston
Oscar Hernandez
Barbara Chapman

The Open64 Compiler
• A robust suite of open source optimizing compiler tools for

Linux/Intel IA-64 systems. It’s in public domain.
– Originally developed by SGI, and currently maintained by Hewlett-Packard.

Other companies have Open64-based products.
– Full support for F95/F90/F77, C, C++.
– State-of-the-art analysis and optimizations.

• Our branch of Open64 is called OpenUH:
– Supports OpenMP 2.0 and optimizations,
– Improved source-to-source capabilities
– Tools interfaces, export static analysis, performs instrumentation,

runtime library include performance monitoring.
– Supports automatic parallelization.

Integration Efforts
Open64 from
Hewlett Packard

Pathscale Compiler

OpenUH

Source-to-Source
Berkley UPC

Interfaces TAU,
KOJAK, Perfsuite,

ECLIPSE/PTP
plugins

OpenMP, Language Extensions,
Analysis, Modeling

http:www.cs.uh.edu/~openuh

Open64 Analysis Infrastructure

Portable components

Fortran Front End
Semantic Analysis

Error Checking
High Level Source

Structure

C /C++ Front End
Semantic Analysis

Error Checking
High Level Source Structure

Source-to Analysis
Tracing Flags

Transformation Logs
XML writer

IPA Analysis
Global Variable Usage

Array Data Flow
Alias Analysis

Inlining Analysis
Procedure Cost Model

Loopnest Optimizer
Loop Transformations

Vectorizations
Automatic Parallelization
OpenMP autoscoping

Loop Cost Modeli

WOPT
Data Flow Analysis (SSA)

Dead code Elimination
Alias Analysis

Source-to Source
Translator

Generate Previews of
Transformations

Instrumentator
Analysis for Selective

Instrumentation
Automatic Instrumentation

Code Generation
Pipelining

Register Allocation
Instruction Scheduling

Tools Interfaces
IA64/Opteron Backend

Optimized
Source code

Analysis Files
.mp
.apo
.xml
.cfg
.pdb

Compiler Plug-in
Flags invoke

different analysis
IR-to-I R
Bridges

Insturmentation
API, Feedback
Data Structures

How compiler analysis can help:

• Be a source of information for the application
developer.

• Provide the infrastructure to support
development/optimization environments:
– Semantic Error/Checkers
– Refactoring Tools
– Modeling Tools
– Assist the creation of parallel code (e.g. OpenMP, Hybrid

MPI/OpenMP code)

• Support work of other tools.

Example: Dragon Analysis Tools.
• Callgraph, Control Flow

Graph, Dependence
Analysis.

•Interprocedural Analysis:
Variable Usage For Arrays

•Cost Modeling Information

• Detects Expensive
Procedures

•Detect Load Imbalances
(MPI/OpenMP)

Depen
dence
Analysi
s

Program Transformations

1: program test
2: real a(1100),b(1100),c(1100)
3: do j=3,1000
4: do i=2, 1100 ,1
5: a(i) = b(i) + c(i)
6: enddo
7: do i=2, 1100 ,1
8: b(i) = a(i) + c(i)
9: enddo
10: enddo
11: write(*,*) a(500)
12: end program

Hierarchical Representation of Program

Source Code

Optimization Logs

Fortran Front
End

Inter-
Procedural
Analysis

Loop Nest
Optimizer /

WOPT

Source-to
Analysis

Source-to
Source

Translator

Optimized
Source Code

Initial Plug-in for PTP 1.1
Tool Chain plug-in for OpenUH/Open64.

Flags Classification
More than 120
Flags Available.

Major Challenges
• Portability to support all Eclipse/PTP users.
• Interactions with tools can be complicated

(e.g. IR-to-IR mappings, two-way interactions)

• No standard intermediate representation
• No standard format represents output of analyses
• Mappings of analyses to the source code has to be

maintained.
• Provide analysis in an intuitive way to the user.

(e.g. scalability is a problem)

Conclusions

• We have began to move our compiler to
Eclipse/PTP

• Focus so far:
• Exporting analyses
• Making it easy to invoke the compiler
• Defining interfaces with PTP/other tools

• Many standard interfaces seem to be needed.

Questions?

Example: Conversion to
Program Database Representation

Source
Code

PDB
Format

Fortran Front
End

Intermediate
Representation

Source to
Analysis

PDB Writer

Scope
Table

Local/Global
Statement

Header
Table

Common
Attribute

Table

Prog. Unit
Attribute

Table

IR List / IR
Tables

Local/Global
Name
Table

Local/Global
Attribute

List

Data
Attribute

Table

Type
Table

Interface
Attribute

Table

Attributes

Global Line/
Source File

Table

Equivalence
Group
Table

PDB

Integrated Tunning Enviroment
Low-Level Trace Data

High Level Profile/
Performance Problem Analyzer

Development Environment
for MPI/OpenMP

Common
Program
Database
Interface

PerfSuite Runtime Monitoring

Dragon Program Analysis Results

OpenUH/ORC
Compiler

Fluid Dynamics Application

Runtime Information /
Sampling

Program Analyses
High Level
Representation

Performance Analysis
Results

Queries for
Application InformationApplication

Source code

Performance
Feedback

KOJAK

Selective Instrumented
Executable

Executing Application

Static/Feedback
Optimizations

TAU

