
Model Transformations
Richard Wood
richard.m.wood@credit-suisse.com



Produced by: Wood Richard 
Date: 16.11.2009 Slide 2

Model Transformations

� Applied in more than 7 different IT platforms and their projects at 

Credit Suisse,

� Over the timespan of three years,

� Code generation to increase productivity as main purpose

� Strong diversity in automation requirements
– Input formats, generated artefacts, model abstraction level and enrichment 

expectations, etc

� OpenArchitectureWare as generator framework
– versions 4.2, 4.3 and 4.3.1

� Eclipse 3.3 and 3.4, models based EMF/Ecore

� UML editors and text editors as modeling tools



Produced by: Wood Richard 
Date: 16.11.2009 Slide 3

Concepts and building blocks

� Models

� Generated Artefacts

– Program Code, Test code, Deployment configuration, etc

� Metamodels (Architecture concept models)

� Readers, Writers (concrete syntax)

– XML, UML/XMI, Java Beans, etc

� Transformations

– Xpand (model to text, M2T), Xtend (model to model, M2M)

� Validation

– Check (oAW), OCL and Java: Eclipse Validation 

Framework

� Transformation Workflow

– Model slots as interface between workflow components

§



Produced by: Wood Richard 
Date: 16.11.2009 Slide 4

Global Services as Enterprise Java Beans

� Java classes for EJB implementation, client and types need to 

be generated
� Service interface definitions specified as UML class models

� Common data types are specified in separate UML class model
– Service interface definitions reference common data types

– Data types are managed independently

� Initial estimates: 50 services and >100 types, >10 Java classes 

per service

� Changes in common types to be expected, iterations

� Quick and dirty solution, two weeks implementation time

� Disadvantages:
– code templates difficult to maintain (UML metamodel knowledge required)

– memory demand too high for batch generation



Produced by: Wood Richard 
Date: 16.11.2009 Slide 5

Global Services as Enterprise Java Beans

Common

Data Types

UML Class models

XMI Reader

Java files

Data Type

Classes

EJB

Classes

UML to Java

M2T

Service

Interface

XMI Reader

UML to Java

M2T

Common

Data Types

Service Interface
two separate

transformations

tight coupling

UML complexity



Produced by: Wood Richard 
Date: 16.11.2009 Slide 6

Global Services implemented as Webservices

� WSDL and XSD files need to be generated

� Same input as for EJBs, UML models with references to 

common data types

� Replaces EJB generator solution

� Independent lifecycles for services and data types, independent 

versioning

� One WSDL per service plus XSDs for common data types

� Dedicated metamodel introduced for global service concepts

� Advantages:
– UML transformation decoupled from code generation

– batch generation better supported



Produced by: Wood Richard 
Date: 16.11.2009 Slide 7

Global Services implemented as Webservices

Service

Interfaces

Common

Data Types

UML Class models

specified in

§

Multi Model

Reader

XML Writer

XML files

XSD for

Data Types

WSDL for

Services

Ecore model

Model

Validation

UML to SMM SMM to WSDL and XSD

Service Meta Model (SMM)

M2M M2M

No M2T required



Produced by: Wood Richard 
Date: 16.11.2009 Slide 8

Interface Management System

� System for managing service descriptions and generating 

platform specific artefacts
– IDL, PL1 Stubs, WSDL, etc

� Consists of a central database, a web application for queries 

and modifications, and a set of generators

� Service descriptions are specified and reviewed in a platform 

independent way
– service metamodel

� Platform specific models are assembled as intermediary step



Produced by: Wood Richard 
Date: 16.11.2009 Slide 9

Interface Management System

Service

Descriptions

Oracle Database

Java Persistence API

specified in

§

Java Bean

Reader

platform specific

service definitions

and artefacts

Corba/IDL

PL1

Ecore model

Model

Validation

Java to SMM SMM to PL1

Service Meta Model (SMM)

M2M M2M M2T

+ PL1 Beautifier

§

Model

Validation

SMM to IDL

M2M M2T
+ IDL Beautifier

platform specific metamodels



Produced by: Wood Richard 
Date: 16.11.2009 Slide 10

Data Access Layer

� Java classes for EJB 3.0 implementation with JPA usage need 

to be generated.

� Tasks: operation auditing, data access authorization, queries, 

CRUD operations, input validation, technical fields, exception 

handling

� Initial DSL based on XML schema definition for quick 

prototyping and existing experience with XML

� XSDs impose design restrictions to metamodels
– tree structure, element references, inheritance, etc



Produced by: Wood Richard 
Date: 16.11.2009 Slide 11

Data Access Layer

XML model

specified in

§

XML

Reader

data access

Java files

XML

configuration

files

Ecore model

Model

Validation

Data Service Meta Model

M2M M2T

XSD model

Data Service Modeling Style

service description

PDF

test code

Java files

model refinement



Produced by: Wood Richard 
Date: 16.11.2009 Slide 12

Project XYZ (multi tier application)

� Large project with the goal to maximize automation during 

software development. Commitment to model the different 

layers of the planned solution (presentation, business and data)

� UML as modelling standard within organisation.
– Technology choices for tooling.

� Models are expressed in a domain specific language

(UML + UML Profile)

� Software designers are supported with tailored modelling tools
– Tooling pallette, model validation, collaboration schemes

� UML class models for component definition, UML activity 

models for business logic



Produced by: Wood Richard 
Date: 16.11.2009 Slide 13

Project XYZ (multi tier application)

UML Class models

UML Activity models

UML UML Profile

specified in

Ecore model

XYZ Meta Model

§

XMI

Reader

Model

Validation

M2M M2T

data access

Java files

business service

Java files

test code

Java files

web gui

Java files

XYZ Modeling Style

equivalent

Spring and

other XML

config files



Produced by: Wood Richard 
Date: 16.11.2009 Slide 14

UML Profile generation

� Disadvantage of creating manually a dedicated UML profile in 

addition to the meta model

� Better to generate the UML profile from the metamodel
– technical conversion, no semantic changes

� A DSL mapped to UML can use UML elements, i.e. not all 

concepts need to be expressed as part of a new UML profile.
– example: NamedElement for elements containing an attribute "name"

� UML Profile elements
– Stereotypes, properties, inheritance, associations, enumerations, primitive 

types, constraints



Produced by: Wood Richard 
Date: 16.11.2009 Slide 15

UML Profile generation

UML model

UML UML Profile

specified in

Ecore model

XYZ Meta ModelXYZ Modeling Style

XMI

Reader

M2MXMI Writer

mapping



Produced by: Wood Richard 
Date: 16.11.2009 Slide 16

Lessons learned

� Metamodel requirements for modeling and generating are 

different
– dedicated metamodels with an explicit M2M transformation, more flexibility 

for the modeling style, less complexity and restrictions for the

transformations

� No code generation based directly on UML
– Code templates (M2T) are best created and maintained based on a specific 

metamodel tailored to the solution domain

� Static content in code templates needs to be independently 

maintainable
– Most software engineers prefer to work with M2T than M2M transformations 

=> keep M2T transformations simple

� Check for existing workflow components
– example XMLWriter



Produced by: Wood Richard 
Date: 16.11.2009 Slide 17

Model Transformations

� Contact
– richard.m.wood@credit-suisse.com

� Questions


