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Model Transformations

� Applied in more than 7 different IT platforms and their projects at 

Credit Suisse,

� Over the timespan of three years,

� Code generation to increase productivity as main purpose

� Strong diversity in automation requirements
– Input formats, generated artefacts, model abstraction level and enrichment 

expectations, etc

� OpenArchitectureWare as generator framework
– versions 4.2, 4.3 and 4.3.1

� Eclipse 3.3 and 3.4, models based EMF/Ecore

� UML editors and text editors as modeling tools
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Concepts and building blocks

� Models

� Generated Artefacts

– Program Code, Test code, Deployment configuration, etc

� Metamodels (Architecture concept models)

� Readers, Writers (concrete syntax)

– XML, UML/XMI, Java Beans, etc

� Transformations

– Xpand (model to text, M2T), Xtend (model to model, M2M)

� Validation

– Check (oAW), OCL and Java: Eclipse Validation 

Framework

� Transformation Workflow

– Model slots as interface between workflow components

§



Produced by: Wood Richard 
Date: 16.11.2009 Slide 4

Global Services as Enterprise Java Beans

� Java classes for EJB implementation, client and types need to 

be generated
� Service interface definitions specified as UML class models

� Common data types are specified in separate UML class model
– Service interface definitions reference common data types

– Data types are managed independently

� Initial estimates: 50 services and >100 types, >10 Java classes 

per service

� Changes in common types to be expected, iterations

� Quick and dirty solution, two weeks implementation time

� Disadvantages:
– code templates difficult to maintain (UML metamodel knowledge required)

– memory demand too high for batch generation
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Global Services as Enterprise Java Beans
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Global Services implemented as Webservices

� WSDL and XSD files need to be generated

� Same input as for EJBs, UML models with references to 

common data types

� Replaces EJB generator solution

� Independent lifecycles for services and data types, independent 

versioning

� One WSDL per service plus XSDs for common data types

� Dedicated metamodel introduced for global service concepts

� Advantages:
– UML transformation decoupled from code generation

– batch generation better supported
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Global Services implemented as Webservices
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Interface Management System

� System for managing service descriptions and generating 

platform specific artefacts
– IDL, PL1 Stubs, WSDL, etc

� Consists of a central database, a web application for queries 

and modifications, and a set of generators

� Service descriptions are specified and reviewed in a platform 

independent way
– service metamodel

� Platform specific models are assembled as intermediary step
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Interface Management System
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Data Access Layer

� Java classes for EJB 3.0 implementation with JPA usage need 

to be generated.

� Tasks: operation auditing, data access authorization, queries, 

CRUD operations, input validation, technical fields, exception 

handling

� Initial DSL based on XML schema definition for quick 

prototyping and existing experience with XML

� XSDs impose design restrictions to metamodels
– tree structure, element references, inheritance, etc
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Data Access Layer

XML model
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Project XYZ (multi tier application)

� Large project with the goal to maximize automation during 

software development. Commitment to model the different 

layers of the planned solution (presentation, business and data)

� UML as modelling standard within organisation.
– Technology choices for tooling.

� Models are expressed in a domain specific language

(UML + UML Profile)

� Software designers are supported with tailored modelling tools
– Tooling pallette, model validation, collaboration schemes

� UML class models for component definition, UML activity 

models for business logic
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Project XYZ (multi tier application)

UML Class models
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§
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UML Profile generation

� Disadvantage of creating manually a dedicated UML profile in 

addition to the meta model

� Better to generate the UML profile from the metamodel
– technical conversion, no semantic changes

� A DSL mapped to UML can use UML elements, i.e. not all 

concepts need to be expressed as part of a new UML profile.
– example: NamedElement for elements containing an attribute "name"

� UML Profile elements
– Stereotypes, properties, inheritance, associations, enumerations, primitive 

types, constraints



Produced by: Wood Richard 
Date: 16.11.2009 Slide 15

UML Profile generation
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Lessons learned

� Metamodel requirements for modeling and generating are 

different
– dedicated metamodels with an explicit M2M transformation, more flexibility 

for the modeling style, less complexity and restrictions for the

transformations

� No code generation based directly on UML
– Code templates (M2T) are best created and maintained based on a specific 

metamodel tailored to the solution domain

� Static content in code templates needs to be independently 

maintainable
– Most software engineers prefer to work with M2T than M2M transformations 

=> keep M2T transformations simple

� Check for existing workflow components
– example XMLWriter
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Model Transformations

� Contact
– richard.m.wood@credit-suisse.com

� Questions


