Open-DO & OSEE

Agile methods for producing High-Integrity software

Nicolas Setton, AdaCore

Stuttgart, May 24-25 2009

A bit of context

- This talk comes from the world of <u>certified</u> <u>software</u> in <u>civilian avionics</u>
 - also relevant for the <u>military</u> and <u>aerospace</u> industries
 - and others.
- Solving a <u>family of problems</u> in software certification
 - by introducing open source and <u>Agile processes</u>
 - and an Eclipse-based tool to implement them

SFF

I. Certification

II. Open-DO

III. OSEE

Certification in civilian avionics (1)

How to certify water:

- take a sample of the final product
- inspect the sample and check for harmful content
- the making process is not relevant

How to certify software for civilian avionics:

- we cannot judge software by a sample, so we have to consider the entire software
- we cannot *prove* the absence of bugs, so we need to test the software
- in order to gain confidence we need to look at how the software is made

Certification in civilian avionics (2)

certification = DEMONSTRABLE DEPENDABILITY

- Certification is delivered by a Certification Authority
- For airborne software, all aspects of certification are described in DO178B/ED12B

DO-178B / ED-12B concepts

"Global" activities

Plan for software aspects of certification (PSAC) Software Development Plan (SDP) Software Verification Plan (SVP) Software configuration management plan (SCMP) Software quality assurance plan (SQAP) Software requirements Specifications(SRS) Software design standard (SDS) Software code standard (SCS)

"Local" activities

Development

Requirements management Software analysis Software verification Code coverage

(etc)

(etc)

Activities depend on the targeted assurance level

<u>Level A</u>: failure results in catastrophe (crash/multiple deaths) to <u>Level E</u>: software has no impact on the mission

DO-178B / ED-12B concepts

Need to guarantee <u>traceability</u>

Some problems with current practices

- Barrier of Entry
- Longevity and Availability
- The <u>Big Freeze</u> problem
 - the RTEMS anecdote

I. Certification

II. Open-DO

III. OSEE

The meeting of 3 worlds

The Big Freeze problem

Continuous Integration Continuous Certification

- Maintain a code repository
- Automate the build
- Automate the testing
- Automate the local certification activities (code coverage, traceability verification, etc)
- Every commit generates a rebuild and a test and the certification activities

Market Service Early detection of defects

The system is always release-ready

The system is always certification-ready

Contributing

The Certification Machine

- Maintain a code repository
- -What certification activities can be automated?
- Automate the build How to implement the machine that does this automatically?
- Automate the testing
- Automate the local certification activities (code coverage, traceability verification, etc)
- Every commit generates a rebuild and a test

I. Certification

II. Open-DO

III. OSEE

OSEE

Open System Engineering Environment

-Eclipse project contributed by
-Apache Team (Phoenix, AZ)
-5 years in development, 12 people full-time
-Not specific to DO-178

OSEE

"One of Eclipse's best-kept secrets" - Ralph Müller

 "OSEE is a tightly integrated environment designed to support lean engineering principles across a product's full life-cycle in the context of overall systems engineering approach."

OSEE

An integrated tool set	
End-to-end traceability	\rightarrow
Variant configuration management ————————————————————————————————————	\rightarrow
Integrated workflows and processes	\rightarrow
A Comprehensive issue tracking system	
Deliverable document generation	\rightarrow
Real-time project tracking and reporting	
 Validation and verification of mission software — 	\rightarrow

OSEE Data Model

OSEE Data Model

OSEE Services

Object-Oriented Persistence

Session Mgmt & Authentication

Version Control

Access Control

Data Store Adapter

Multi-Level Branching

Multi-Level Transactions

Dynamic Artifact Model

Dynamic Searching API

Indexing & Tagging

Remote Event Service

Extensible Rendering

Plugin Dev Utilities

OSEE Application Framework

OSEE Applications

Friday, 26 June 2009

Conclusions

Agile is relevant for developing safety-critical software

Consider the OSEE approach

Further readings

www.eclipse.org/osee/