
1.0 Policy Builder - CLASS DIAGRAM

Axiom Rampart Policy

2.0 Policy Builder - DATA Model

2.1 Policy Behavior Model

Basic unit of policy checking mechanism is a Policy Behavior. One can create a policy checking handler by
simply extending to ‘PolicyBehavior’ Abstract Class. Each Behavior is responsible for extracting policies
of a particular wsp : policy scenario. Some set of behaviors can be inherently focused on checking a
particular wsp policy instance and related types (ie:-Symmetric Binding and related assertion types) and
is grouped into configs/phases. Each concrete Policy Behavior is provided with
init(),evaluate(),handleSuccessor(),skip() functionalities by it’s abstract interface in-order to work on
each policy scenario. For Example ‘init()’ can be used to initiate the respective behavior with the
required properties(ie:-gathered from a PropertyFactory) it depends on and ‘handleSuccessor()’ can be
used to go to the next behavior(as specified in the descriptor) when policy evaluation is completed. Also
there is no restriction to use functionalities of other behaviors to fulfill/check a particular property and
hence behaviors may contain dependencies on other behaviors as well. Another important fact is policy
derivation system’s dependency on Rampart Security Policy model (org.apache.ws.secpolicy.model) and
therefore output will be a Serialization dependent on this model itself.

2.2 Rampart Security Policy Model

Rampart Security Policy Model is really important to Policy Builder System since it provides the essential
wsp compliant policy model to build the hierarchy based on the underline information in the SOAP
message itself . When the required information is gathered in the process of a handler (or ‘behavior’)
the aforementioned information is properly fed into the respective Policy Model Constructs . Therefore
after a successful ‘phase’ completion the necessary ws policy assertion hierarchy will be built and
Eventually will be serialized into a consumable format.

<<AbstractSecurityAssertion>>

+serialize(OutputStream)

<<Token>> <<Binding>> <<WSS>> <<Layout>>

X509Token Initiator Token

Recipient Token

SymmetricBind

AsymmetricBind

WSS10

WSS11

3.0 Policy Builder – Internal Operation

3.1 Policy Extraction Process

Policy Engine extracts a wsp:Security Policy compliant policy assertions using the underline SOAP

message.Basically this Procedure is started with the provided SOAP Message entering the

handler/behavior chain which was contructed at the startup of the policybuilder system. Each individual

handler checks for underline policy mappings in the SOAP message inside their 'evaluate' methods.

Developers are provided with two abstract methods 'handleSuccessor(OMelement)' and

'skip(OMElement)' inorder to continue with the current phase or skip to the next phase(ie:-incase SOAP

doesn't relate to current policy checking phase) respectively.

<<Abstract>>
PolicyBehavior

Custom Behavior [n]

+init()

+evaluate(element)

Custom Behavior [n-1]

+init()

+evaluate(element)

Custom Behavior [n+1]

+init()

+evaluate(element)

handleSuccessor()
handleSuccessor()

skip()

SOAP

Message

WSP Policy

Instance/s

Policy

Builder

Engine

..

.

3.2 Policy Extraction Engine - Initializing

An External Descriptor file(builder.xml) is used to build the handler chain. This Descriptor defines the

order of the handler chain , different phases(ie:-‘config’ s), assertion types associated with each

behavior, etc. This is kind of similar and based on Chain of Responsibility (ie:-Chain of Responsibility

Design Pattern)configuration for a handler set (/set of Behaviors) . However behavior set is grouped

into configurations(ie:-configs) or phases where each seperate set can be evaluated separately.Policy

extraction will be done for each phase and a security policy assertions will be derived for each individual

phase if the phase is successfully completed. Following shows a descriptor configured to have two

phases checking may be two different policy scenarios.

XML

Descriptor

XML Assembler

Process/Group

 Handler Chain

phases/configs

Behavior
(Handler)

...

3.3 Handler Data Flow

Axiom Object model and Rampart Security Policy Model is extensively used in the Policy Builder

System.Policy Builder uses StaxParser (A Pull parser used in Apache Axiom) to generate XML Object

Model and provide it as input to the handlers. Using the property information and other context

information , underline security policy information is derived and inturn provided for Policy Model

which is then made responsible for policy serialization. The OMElement (Axiom XML Model Object) will

be propagated through the handler chain (‘behavior Set’) since the XML infoset information of the SOAP

message will be needed to extract the underline policy throughout this process.

Policy
Model Serializer

SOAP

Input

Stax
Parser

(Axiom)

Behavior/
Handler

Policy

Context

Behavior/
Handler

Raw
XML

Stream

XML
Object
Model

OM
Element

Policy
Model

Info

Behavior

Property

Factorie

s

Context
Info

Related
Property

Info

Output

Raw
Output
Stream

4.0 Policy Builder UI

In the user interface of the Policy builder ,jsp dispatches the input stream of SOAP data asynchronously

into Servlet Dispatcher (Upload Executor) which inturn uses a stub generated (using the Service WSDL)

to invoke the web Service. Web Service interacts with the Policy Builder System and provides the

derived output to the servlet. Sevlet will inform the jsp of the response through a the Ajax CallBack. Ajax

call-backs are done through Yahoo yui wrapper scripts while WSDL2Java is used as the Client stub-

generator for the Web service .An Upload Executor(ie:-Variant of a java Servlet) has been used

intermediately to avoid cross-domain browser restriction errors.

Author : U.S.Wickramasinghe

gmail : mastershield2007@gmail.com

 JSP View
 SOAP FILE

 Async Request

 SOAP String

 Servlet
or

Upload Executor

Web Service

Send

Input

SOAP

Derived

Policy

Response

Policy Builder

Policy Builder

 Data Stream Stub

Response

mailto:mastershield2007@gmail.com

