
IBM Tivoli Software

© 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

SDD Proposal to COSMOS

Jason Losh (SAS), Oasis SDD TC Tooling Lead
Mark Weitzel (IBM), COSMOS Architecture
Team Lead

2 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Increasing emphasis on "solutions"
� a combination of hardware and software components supporting a defined business process
� solutions need to be installed, configured, deployed, monitored, operated, problem diagnosed,

maintained,...
� these tasks must be driven from a solution perspective
� the post-purchase experience shouldn't degenerate to a bunch of point products and solution

components

Why: Customer Problems
Customer Feedback – More than half of outages caused by inability to
roll out application changes because of complex interdependencies with
other application components and products

3 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Why: Complexity of Managing Software

Package Identity
What is this thing?

What does it contain?

Package Variability
What “parts are needed to

be deployed”?

Requirements
What is needed to deploy this package?

What is needed to be maintained for the lifetime of
the deployment?

Results
What does this provide?

What effect will this have on my
environment?

Require external information to enable consumers to analyze and make pre-deployment
decisions. Consumers can be tools that are performing composition or tools that are
making pre-deployment decisions.

Software Package
(Logical / Not Physical)

4 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Primary Use Cases
OASIS TC has defined use cases, including:
� Install to Development/Test

� Install to Production

� Aggregation/Complex Deployments

� Upgrade to new version

� Install patches/service packs

� Uninstall base, upgrade or maintenance

Source: http://www.oasis-
open.org/committees/document.php?document_id=22893&wg_abbrev=sdd

These are the basic use cases required by products and customers as evidenced by
OID and adopter requirements. They should be part of the first reference
implementation.

5 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

PROPOSED COMMUNITY

� Many companies from the OASIS SDD TC and the industry have
expressed interest in actively developing tools and runtime for the
SDD standard

– SAS

– IBM

– SAP

– Wind River

– Macrovision

� Most are expected to contribute at least one person to the project

� Others are expected to participate from COSMOS once it is
socialized within the community

6 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

SDD Usage – Creation of SDDs

� SDDs that wrapper existing installs (such as ISMP, MSI,
etc.) need to be created

• Enhances adoption by leveraging existing inventory of
install programs

� SDDs will need to be authored by solutions developers

• Possible extension point – an IDE for
editing/creating SDDs

� SDDs will need to be generated by build processes or post-
build processes

7 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

SDD Usage – Consumption of SDDs
� SDDs will need to be processed and the instructions contained in them acted upon

– Possible extension point – an SDD runtime must be extensible

� Metadata about changes that occur as a result of SDD processing needs to be
stored for later retrieval for things like maintenance, hot fixes, etc.

– Possible extension point – the underlying storage system should be capable of being
overridden and/or extended

– The implementation must not be bound to a specific resource model

� To support orchestrated installation of a distributed system, the runtime acting
upon SDD needs to expose its availability to other consumers like an install
program

� Install performance requirements:
– Must be impacted at no more than 10% with minimal footprint and using small, nimble

components (JRE, database, etc)

� Resource Models Requirements:
– The runtime and tooling created in support of the SDD must be able to support

different underlying resource models

� Security requirements:
– Handle root/non-root installs, appropriate credentialing on remote install scenarios, and

don’t require writable space on install media/local disk

8 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

SDD Creation tools - Proposed development in open source

� SDD Validator – checks syntax of the SDD XML
• Validator shall check CL1 based SDDs
• Validator shall check CL2 based SDDs

� SDD Programmatic Interface – deconstructs information in the SDD and
creates objects from SDD elements

• Parser shall deconstruct CL1 based SDDs
• Parser shall deconstruct CL2 based SDDs
• SPI shall create data objects from SDD elements
• SPI created data objects shall be consumable via API

� SDD Wrapper Generator – creates SDD wrappers for existing install
programs (MSI, ISMP, etc.)

• Wrapper Generator shall be capable of inspecting existing install packages and
creating SDDs based upon them

• Wrapper Generator shall generate CL1 based SDDs from existing install
programs

• Wrapper Generator shall generate CL2 based SDDs from existing install
programs

� SDD Build Time Generator – creates both CL1 singletons and CL2
composites

• BTG shall read SDD data objects and create CL1 SDDs
• BTG shall read SDD data objects and create CL2 SDDs
• BTG shall be “pluggable” into existing build environments

9 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

SDD Runtime - Proposed development in open source

� SDD Runtime – reads instruction set encoded into SDD and acts upon those
instructions such as resource constraints, environment checks, etc.
– Runtime shall support basic use cases described on slide five
– Runtime shall be capable of acting upon the basic instruction set
– Runtime shall perform at no less than 10-20% slower than native technology
– Runtime shall take into account security requirements such as ACL, remote

installation

� SDD Runtime Embedded Storage – stores information about change to the software
such as install, maintenance, hot fix, uninstall, etc.
– Embedded storage may be a relational database
– Embedded storage shall house either a critical subset of SDD data or the SDD itself
– Embedded storage shall provide a listing service for viewing of content
– Embedded storage shall provide a service or utility for direct editing of content
– Embedded storage shall support default and pluggable databases (use what already

exists, e.g. CMDB)
� SDD Service – serves as a local or remote reference to a runtime

– Service shall expose availability/capability of runtime(s)
– Service shall keep an installation index up to date for easy lookup of deployed

software

� SDD Installation Index – an index for lookup of an SDD service

10 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Requirements for release: Target June 2008
� SDD Validator – checks syntax of the SDD XML

• Validator shall check CL1 based SDDs
• Validator shall check CL2 based SDDs

� SDD Programmatic Interface – deconstructs information in the SDD and creates
objects from SDD elements

• Parser shall deconstruct CL1 based SDDs
• Parser shall deconstruct CL2 based SDDs
• SPI shall create data objects from SDD elements
• SPI created data objects shall be consumable via API

� SDD Wrapper Generator – creates SDD wrappers for existing install programs (MSI,
ISMP, etc.)

• Wrapper Generator shall be capable of inspecting existing install packages and creating SDDs
based upon them

• Wrapper Generator shall generate CL1 based SDDs from existing install programs
• Wrapper Generator shall generate CL2 based SDDs from existing install programs

� SDD Build Time Generator – creates both CL1 singletons and CL2 composites
• BTG shall read SDD data objects and create CL1 SDDs
• BTG shall read SDD data objects and create CL2 SDDs
• BTG shall be “pluggable” into existing build environments

– BTG shall read SDD data objects and create CL1 SDDs
– BTG shall read SDD data objects and create CL2 SDDs
– BTG shall be “pluggable” into existing build environments

11 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Requirements for release: Target June 2008

� SDD Runtime – reads instruction set encoded into SDD and acts upon those
instructions such as resource constraints, environment checks, etc.

– Runtime shall support basic use cases described on slide five
– Runtime shall be capable of acting upon the basic instruction set
– Runtime shall perform at no less than 10-20% slower than native technology
– Runtime shall take into account security requirements such as ACL, remote installation
– Runtime may provide a remote interface over web services based protocols

� SDD Runtime Embedded Storage – stores information about change to the software
such as install, maintenance, hot fix, uninstall, etc.

– Embedded storage may be a relational database
– Embedded storage shall house either a critical subset of SDD data or the SDD itself
– Embedded storage shall provide a listing service for viewing of content
– Embedded storage shall provide a service or utility for direct editing of content
– SDD Runtime may provide a remote interface over web services based protocols

� SDD Service – serves as a local or remote reference to a runtime
– Service shall expose availability/capability of runtime(s)
– Service shall keep an installation index up to date for easy lookup of deployed software
– Service may provide a remote interface over web services based protocols

� SDD Installation Index – an index for lookup of an SDD service

12 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Why Open Source?
� Open source will

– Promote and accelerate the adoption of SDD
– Provide a reference implementation for the OASIS SDD standard that

can enhance interoperability
– Provide a base runtime that commercial vendors can extend
– Allow collaboration to solve deployment problems which will help with

issues such as integration, compatibility, etc.

� SDD does not define runtime behavior
– OASIS Technical community desires to work together on construction

of a runtime

� A reference implementation in required for Oasis approval of
the specification
– An open runtime will facilitate the creation of reference

implementations

13 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Community Value Derived From Open Source
� Benefit to open community

– Uses standards throughout
• SDD, CIM/SML/CML, Web Services

– Lower Total Cost of Ownership
• Development expense for “infrastructure” shared among community

– Higher quality software, e.g. collaboration between vendors brings in
best ideas of each

– Demonstrated value through exemplary applications

� Benefit to commercial vendors
– Standards-based software lifecycle management

• Consistency across vendors in describing deployment artifacts &
expressing dependencies

– Reference implementation is pubicly available to enhance
building/deploying of complex composite applications

– Easily extended and built upon by commercial vendors

– Enables applications to be ready for deployment by participating
provisioning systems

IBM Tivoli Software

© 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Example Scenario

15 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Install
Program

1. The IT Administrator wants
to install version 2 of the
Accounting application on
Server RH1. This will
replace version 1 of the
same application

2. The install program needs to
access the SDD Service on
RH1 to make the change. It
queries the “Installation
Index” for the SDD Service
(SDDS) that contains the
information for Server RH1.
**An alternate query could be
for all servers that have
version 1 of the Accounting
application.

3. A reference to the SDDS is
returned. If the deployment
is distributed, this would be
an EPR.

Use Case “Install to Production”: Step 1

“Installation Index”
is populated with
SDDS/R refs.

IT Administrator

1

2
3

SDDS

SDDS

SDDS

SDDS

Installation Index

16 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Server RH1 SDD Runtime

Install
Program

The SDD Service contains the
management data of the
installations.

1. The install program can
retrieve information about the
capabilities of the service by
using WS-Metadata
Exchange (WS-Mex)

2. The client could ask the
SDDS for the current set of
installed software on the
Server RH1

3. An additional piece of
information that may be
exchanged is the reference
to the SDD runtime (SDDR)
that can perform an install.
This may be the same as the
SDDS reference (local
machine instance) or it could
be distinct (CMDB use case)

SDDS

Use Case “Install to Production”: Step 2

SDD Service
(SDDS)

Install
Information

Server RH1 SDDS

SDDS

SDDS

SDDS

SDDS

Installation Index

1

2

3

17 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Server RH1 SDD Runtime

Install Program

1. Given a reference to the
SDD runtime, the install
program can orchestrate the
deployment.

2. Following a successful
installation, the install
information contained in the
SDDS will need to be
updated. This can happen
via an event, e.g. a WS-
Notification. This would
facilitate a loose coupling of
the components.

3. When the SDD Service is
updated, the Installation
Index will need to be updated
as well with new information.
This information will be the
updated metadata indicating
it now has version 2 of the
Accounting app.

SDDS

Use Case “Install to Production”: Step 3

SDDR

SDD Service
(SDDS)

Install
Information

SDDS updated

Installation Index updated

1

2

3 SDDS

SDDS

SDDS

SDDS

Installation Index

18 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Step 3, Runtime actions details (taken from IUDD spec)
� The runtime takes user input (via the

client or some other mechanism – i.e.
response file) and performs action based
on the inputs

� Runtimes perform each of the actions
represented below in the circles …
environment checks, gathering of input,
requirement checks, the change operation
and registration of the change. One or
move events may be triggered in each of
these actions. Such events can be used
for progress indication, orchestration, etc.

� Change can be new software, additional
languages or changed configurations

� The runtime should be a framework that
allows for extensions to the actions
identified. The runtime executes a chain
of actions which fire events. Consumers
of a runtime should be able to easily add
actions to the chain.

� Default actions should have the ability to
be overridden. Consumers may replace
the environment check action with their
own. An action descriptor will need to be
supplied to the runtime to indicate what
actions to load, execution order, etc.

Environ
Checks Input ChangeReqts

Checks Register

Hosting
Environment IU Database

User Input/
Response File

IU
Descriptor

Artifact
Descriptor Files

Files

Artifact

Installable Unit

19 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Step 3, Runtime Life cycle operations
(taken from IUDD spec)

� This diagram reflects the
state of a deployed
installable unit,
configuration unit or
localization unit (all
defined in the SDD)

� Runtimes perform
actions on artifacts
based on metadata
defined in the SDD. That
metadata will determine
artifact state in the life
cycle operations
associated with that
artifact

Created

UsableUpdated

Create

Update

Migrate

InitialConfig

VerifyIU

Delete Delete
Delete

VerifyIU

VerifyIU

20 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Runtime extension points
� The runtime serves primarily as a backbone. Any of the actions that it executes can be replaced and

additional actions may be inserted into the chain
� Below the default path is outlined in grey. Users can override actions as illustrated in the

requirements checks action as well as add new actions as illustrated with the verify example.
Additional actions do not have to be appended to the action chain … they can be added anywhere in
the chain.

� This implies the runtime supervisor must follow a plugin architecture and load the appropriate
modules in the appropriate order as specified by the runtime consumer. This may lend itself to an
OSGi bundle/plugin model

� This project will NOT address the client application included in the initial slides as such the UI for
driving and orchestrating these changes will be provided by the consumer of the runtime or as a
commercially available product from install tool providers.

� A possible reference implementation would be to install COSMOS using an SDD and this runtime.

Environ
Checks Input Reqts

Checks Change Register

Action x
(eg.

verify)
Reqts

Checks

Runtime Supervisor

SDD Runtime

21 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

SDD Service
� The runtime interacts with an SDD service … either local or remote. The service is used primarily

for registration of the change.

� Registration includes software id, install location, version information, etc.

� Embedded in the SDD service is a data storage system … possibly Derby, although alternative data
storage systems could be used.

� The service will need read/write APIs exposed to the runtime. The runtime will need to query the
underlying installation information for software already installed as well as write data about the
software it is deploying

� The data model for the underlying storage system will need to be designed

SDD Runtime

SDD Service

Embedded
Storage

reads
writes

22 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

SDD Service

� The SDD service must also update the Installation Index with appropriate information -
- a handle to the installed software instance but not ALL data that goes into the
underlying data storage system.

� Assumption is that the SDD service will require the ability to both write (update) and
read (query) information in the Installation Index.

SDD Runtime

SDD Service

Embedded
Storage

reads
writes Installation Indexreads

writes

23 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Installation Index
� Installation index is a relatively simple table designed to provide handles to all entities deployed in a

particular domain. Assumption is that entities are all software related, but may or my not be
applications … device drivers for example.

� The index should provide an address to the SDDS which “hosts” the install data (in the relational
database mentioned earlier). All data needed to create the address is unknown at this point.

� May use SDMX standard for this

Installation Index

<EntityName="Accounting App">
 <VersionNumber=1.0>
 <ServiceHost="sddshost">

IBM Tivoli Software

© 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Questions??

25 © 2007 by Eclipse Foundation; made available under the EPL v1.0 | August, 2007

Definitions & Concepts…

Installable Unit: the basic unit/component of a software application. Can be
installed standalone or with another component.

IU

A runtime construct that exposes a well defined API for accessing the
installation information of a set of resources.

SDD Service

The actual files to be deployedArtifact

Software that interprets the SDD package and deploys the package based
on the SDD contents

SDD Runtime

Solution Deployment Descriptor. An XML representation of a piece of
software: its identity, requirements, executable, possible targets

SDD

A catalog (repository) used to find the endpoints of an SDD Runtime.Installation Index

