
Oak Ridge National Laboratory
23-24 May 2007

pa ra l l e l debugg ing

cha l l enges & oppor tun i t i e s

© 2007 by G reg Wa t son ; made ava i l ab l e unde r t he EPL 1 .0

pa ra l l e l debugg ing : cha l l enges & oppor tun i t i e s

State of the Art

• Traditional debugging methodology
– Follows execution flow

– Breakpoint, inspect, step, repeat (B.I.S.R)

• May not work with advanced languages

• Will not work with petascale architectures
– With 106 threads of execution?

• Assumption is that gdb and TotalView will solve
the problem

• When all else fails: printf

2

© 2007 by G reg Wa t son ; made ava i l ab l e unde r t he EPL 1 .0

pa ra l l e l debugg ing : cha l l enges & oppor tun i t i e s

Debugging Challenges

• Identifying error occurrence
– Predicates/assertions

– Message/data patterns

• Locating error data
– Visualize global program state

– Comparison/search across application

• Rewinding/replaying
– Holy grail?

3

© 2007 by G reg Wa t son ; made ava i l ab l e unde r t he EPL 1 .0

pa ra l l e l debugg ing : cha l l enges & oppor tun i t i e s

Debugging Challenges (cont...)

• Smarter debugger
– Can the debugger off-load some of the burden from the developer?

• Leverage other tools to assist with debugging
– e.g. Performance tools to identify hot spots/regions of interest

• Timing issues?

• ... and still be as easy (or easier) than printf

4

© 2007 by G reg Wa t son ; made ava i l ab l e unde r t he EPL 1 .0

pa ra l l e l debugg ing : cha l l enges & oppor tun i t i e s

Heterogeneous Architectures

• What about heterogeneity issues?

• Needs to support different processor architectures

• Multiple levels of hierarchy

• Different programming models at each level

5

© 2007 by G reg Wa t son ; made ava i l ab l e unde r t he EPL 1 .0

pa ra l l e l debugg ing : cha l l enges & oppor tun i t i e s

How to get out of the rut?

• Universal parallel debugging platform for research
development

• Rich user interface

• Community willing to undertake research/
development
– Must be open source

– Too hard to develop from scratch

• Some level of confidence
– Technology can be advanced

– Will aid developers, not hinder

– Longevity of platform, solution

6

© 2007 by G reg Wa t son ; made ava i l ab l e unde r t he EPL 1 .0

pa ra l l e l debugg ing : cha l l enges & oppor tun i t i e s

PTP Debug Platform: Now

• Traditional debug views

• Groups of processes
– debug commands (e.g. step, resume, etc.)

– breakpoints

– execution location

• Client/server debug architecture
– Debug application launch

– Command broadcast

– Event Aggregation

7

© 2007 by G reg Wa t son ; made ava i l ab l e unde r t he EPL 1 .0

pa ra l l e l debugg ing : cha l l enges & oppor tun i t i e s

PTP Debug Architecture

8

Eclipse

20

• Debug server is an MPI
program

• Debug engines are started on
each node, one per process

• Debug engines act as
message forwarders/
aggregators

• High level debug API allows
replacement of debug server

• GDB currently used for low-
level debug operations

© 2007 by G reg Wa t son ; made ava i l ab l e unde r t he EPL 1 .0

pa ra l l e l debugg ing : cha l l enges & oppor tun i t i e s

PTP Debug Platform: Future

• Advanced debug views
– Visualize data from multiple processes

– Support for multiprocess/mutithreaded applications

– Better scalability in views

• Generic server architecture
– Launch other tools, not just debuggers

– Generalized command broadcast/event aggregation framework

– Arbitrary message format for tool communication

• Support for proprietary backend debug engines

9

