
Eclipse technology in IFMS 

Interface Management System 

Eclipse Finance Day 2013 

Marc Schlienger 



A story today about Eclipse and IFMS 

SOA at Credit Suisse 

The construction of a System 

MDD in the large 

Leveraging assets for Modernization 

Outlook 

 



SOA at Credit Suisse 

Introduced for three major reasons 

− distributed computing (using CORBA technology) 

− standardize how services are documented and reviewed 

− centralize service documentation, foster re-use 

 

Overcome ongoing Challenges 

− People come and go, know-how gets lost 

− Application Landscape is aging 

− Technology diversifies 

− Manage complexity 



Decomposition into Components 

 
IT landscape decomposed into 
business domains 

 

These coarse-grained 
components are (de)coupled 
through services 

 

Services expose a business view 



Services and Interfaces 

 

Service exposed  

over an interface 

 Consumer Provider 



IFMS makes SOA scale 

Interface Management System = central Service Repository 

Service and Data Type Catalog 

Service Contracts, Dependencies, Reviews 

Lifecycle Management 

Governance Enforcer 

Code Generator 

 

> 3’000 services in IFMS 

> 7’000 operations in IFMS 

 



3 Perspectives on IFMS 

Construction Scaling Factors Modernization 



Simplified Architecture 

DB 

Operation 

Data 
Type 

Service 

Domain Model 

Persistence 

Layer 

Code 

Generator 

Appl. Logic 

models 

UI 

Import/Export 

ModelHub 
UML 

models 

Code & 
more 



Construction – the Data Layer 

Domain Modeling with EMF/ecore model 

Generate scaffolding for model-to-model transformation between 

Persistence Layer and EMF model 

XMI serialization for transferring model data 

− Interface to Import/Export and Code Generator 

− Used for troubleshooting 

 

 

 

 Operation 

Data 

Type 

Service 

Domain Model 



Construction – Code Generator 

Code Generator part of Service Repository (centrally managed) 

Based on IFMS service models, generates: 

− PL/1 

− CORBA IDL 

− WSDL&XSDs 

− Java code 

Built on oaw (xtend, xpand, check, mwe) 

− Express model validation consicely: check 

− M2M functional transformation language: xtend 

− M2T polymorphic template engine: xpand 

− Reusing Abstract Syntax Tree and Java code serialization from Eclipse 

JDT 



Construction – Import/Export and ModelHub 

Import/Export of model data expressed in terms of the domain model 

− Built using EMF Compare 

 

ModelHub for transforming from and to UML models 

− Xtend and ATL based transformations 

− Supports for RSM and Enterprise Architect XMI dialects 

 



Scaling – Quality and Stability 

Special needs for testing Code Generator 

Create test data (Builder Pattern on top of EMF 

model) 

Execute test 

− Normalize generated artifacts (remove differences 

due to moment of execution) 

Verify results 

− Normal JUnit asserts 

− File comparisons 

− Source code compilation 

Check model coverage 

− Annotations 

− Equivalence class matrix 



Scaling – Performance 

Large user base (ca 400 in 2013) 

Generator started 2’600 times in 2013 (up to 150 per day) 

Limitations of oaw (xtend 1) 

− Slow, Java interpreted 

− Needs huge stack 

M2M vs M2T 

− Flexibility vs Readability 

− Fine vs Coarse granular objects 

 

1 
• Generator in separate Server/JVM 

• Generator as a Service 

2 • Migrate to xtend 2 



Modernization 



Leveraging existing assets 

IFMS central in CORBA to WebService migration 

Import existing CORBA IDLs 

Generate diff models describing IDL vs WSDL 

− Leveraged for automatic testing 

 

Xtext based IDL Parser 

− Simplifies parser writing 

− EMF based models 

Groovy for intermediate transformations 

− Concise and elegant syntax 

− Mind the troubles when searching for errors 

 

IDL 

IFMS 

WSDL 

? 



Outlook 

There are many MDD styles (bold = IFMS style) 

Metamodel/Language: generic vs. specific (UML vs. DSL) 

Modeling Tool: trim existing case tool vs. build specific one 

Editor: graphical vs. textual vs. forms-based vs. combination 

Build overall system vs. build specific parts of a system 

Tool deployed centrally vs. available within the IDE 

Model transformations 

Store and manage models centrally vs. decentralized 

Physical model representation/store: RDB, XMI, Other 

 

Thank you! 
Marc Schlienger 

marc.schlienger@credit-suisse.com 


