
MODeX
Model Oriented Data eXchange

Eclipse Banking Day

December, 2008

Ted Epstein and Andrew Montalenti

Morgan Stanley

What is MODeX?

A domain-specific modeling language for enterprise
messaging.

Components include:

Graphical modeling IDE

Code generator

Language-specific runtime components

Lifecycle management tools

Current State of XML Messaging
in the Enterprise

• Direct XML manipulation is the least
common denominator.

• Toolkits handle basic SOAP
envelopes, transport, message
dispatching and handling.

• Developers may use JAXB, XSD.EXE
for marshalling/unmarshalling.

• Adopting CxF and WCF as standards

• Ambivalent relationship with
schema:

• Most developers ignore it or
treat it as a design-time
exercise.

• Some developers invest heavily
and want to use schema as
“the model”

• Developers and designers have been
left to translate business concepts to
XML formats.

• Elements or attributes?

• Type substitution or element
substitution?

• Nesting or IDREF for shared
references?

• …

• Big problems:

• Cost of coding directly against
XML or even mapping is a drag on
developer productivity

• Proliferation of formats makes
integration extremely expensive.

• Weak contracts affect data
quality.

Solution:

• Create a simple graphical modeling language for enterprise data and
message contracts

• Create a federated model repository for shared models and lifecycle
management

• Generate schemas from well-specified message contracts

• Generate code and provide runtime support for multiple languages

• Build on this basic foundation to address other large-scale issues

Model-Driven Development
Lifecycle

MODeX Domain Model

MODeX Code

Generator

XML Schema

Java / C#

Generated

Domain API

Application Code

XML

Message

marshalling
Application Developer

uses

unmarshalling

Conforms to...

Enterprise

Model

Repository

Publish

 model

 reference

shared definitions

Business Information

Model

Message Contract

Designer

Message Contracts

Domain Expert /

Business Analyst

Eclipse Modeling Technologies

Proven open source technology stack

GMF

GEF

EMF

RCP

SWT/JFace

Equinox

Generative Diagram
Editor Framework

MVC Pattern for
Graphical Editors

Model-Driven Development
Framework, integrated with GMF

Views, Editors, Perspectives

UI Toolkits

Plug-in and Buddy
Classloader System

MODeX Designer
Demo and Walkthrough

MODeX Designer

Entity Modeling

Message Contract Modeling

Generated schemas

Generated Java API

MODeX - Key Features

Inheritance and Subtype Roles

Field Value Constraints and Enumerations

Views and Payload Contracts

Full-Fidelity Messaging

Entity-Centric API

Data Aspects

Model Documentation - Modelpedia

Inheritance and Subtype Roles

CompanyReportImpl

«Interface»

ResearchReport

ResearchReportImpl
«Interface»

CompanyReport

Entity Definitions: Generated Domain API:

View Definitions Schema complexTypes:

Types are substitutable in
the generated API and
Schema.

Subtype role: “if the
research report is a
company report, these
additional fields are
required.”

Field Value Constraints,
Enumerations

Field Value Constraints based on a subset XML Schema facets:

� Range

� String Length

� Regular Expression

� Numeric Format

Static Enumerations (current):

� Available for any primitive type

� Translate to a true enum in Java

� Translate to a “typesafe enum” pattern in C#, C++

Semi-Static Enumerations (planned):

� Allowable values determined at runtime by a lookup into a database or data
service.

� Enable/Disable validation, set expiration policy by configuration

Message Contracts

• Entity Model:

Views Example – Stage 1

* Party ID

* Legal Name

Identity Type

Tax Treatment

Legal Entity Status

Consolidated

Regulated

Audited

Country of Formation

FY End Month

Formation Date

Legal Form

Trade Type

EIN

GL Company

Approved Organizations

Responsible Organizations

Product Types

Legal Identity

Segment

Business Unit

Division

Organization

Responsible

Organizations

Product Type ID

Description

Product Type

Product Types

GL Code

Functional Currency

Status

GL Company Name

Parent GL Company

GL Stream

Cost Center CTA

CC P and L

CC Retained Earnings

TAPS Fed

Mirror Company Security

Mirror Company FX

Accounting Jurisdiction

GL Company

Jurisdiction ID

Description

Governing Body

Revision

Accounting

Jurisdiction

GL Company
Accounting

Jurisdiction

Views Example – Stage 2

* Party ID

* Legal Name

Identity Type

Tax Treatment

Legal Entity Status

Consolidated

Regulated

Audited

Country of Formation

FY End Month

Formation Date

Legal Form

Trade Type

EIN

GL Company

Approved Organizations

Responsible Organizations

Product Types

Legal Identity

Segment

Business Unit

Division

Organization

Responsible

Organizations

Product Type ID

Description

Product Type

Product Types

GL Code

Functional Currency

Status

GL Company Name

Parent GL Company

GL Stream

Cost Center CTA

CC P and L

CC Retained Earnings

TAPS Fed

Mirror Company Security

Mirror Company FX

Accounting Jurisdiction

GL Company

Jurisdiction ID

Description

Governing Body

Revision

Accounting

Jurisdiction

GL Company
Accounting

Jurisdiction

Views Example – Stage 3

* Party ID

* Legal Name

Identity Type

Tax Treatment

Legal Entity Status

Consolidated

Regulated

Audited

Country of Formation

FY End Month

Formation Date

Legal Form

Trade Type

EIN

* GL Company

Approved Organizations

Responsible Organizations

Product Types

Legal Identity

Segment

Business Unit

Division

Organization

Responsible

Organizations

Product Type ID

Description

Product Type

Product Types

* GL Code

Functional Currency

Status

GL Company Name

Parent GL Company

GL Stream

Cost Center CTA

CC P and L

CC Retained Earnings

TAPS Fed

Mirror Company Security

Mirror Company FX

Accounting Jurisdiction

GL Company

Jurisdiction ID

Description

Governing Body

Revision

Accounting

Jurisdiction

GL Company
Accounting

Jurisdiction

Full-Fidelity Messaging

<Block blockId="8927340">

<Allocation allocationId="982734">

<Account modex:objectId="1"

accountId="12349087"

accountCode="ABC"

type="DEF" />

</Allocation>

<ClientNotice date="2007-09-17" status="sent">

<Account modex:objectId="1" />

</ClientNotice>

</Block>

Block b = BlockMsg.unmarshalFromDocument(doc);

ClientNotice cn = b.getClientNotice();

String accountCode =

cn.getAccount().getAccountCode();

Objects:
�Object Graphs may contain
shared references and cycles

XML:
�Shared objects are detected
by the marshaller, and
assigned a unique ID.

�The unmarshaller will
reconstruct the object graph
with full fidelity.

API:
�Traversal over the object
graph across any path yields
full access to all fields.

Entity-Centric API

tradeId

product

coupon

… (a few others)

«complexType»

BondTradeCapture

tradeId

product

coupon

customerAccount

confirmPolicy

… (many others)

«complexType»

BondTradeEnriched

Front Office

Middle Office

Back Office

tradeId

product

coupon

customerAccount

confirmPolicy

… (many others)

«class»

BondTrade

unmarshal

marshal

3

2

1

enrich

Model-Based Code Gen:

�Single class/interface each
entity

�An entity class can be
marshalled to multiple views,
validated against multiple
contracts

�API decoupled from specific
message format.

Schema-Based Code Gen:

� Separate class for each
complexType.

� Enrichment and
request/response scenarios
require copying from one
representation to another.

� Additional memory footprint,
performance overhead and
development effort

� Effects multiply with number
of types, clients, services,
and message formats.

Data Aspects

• Concept borrowed
from aspect-oriented
programming

• Represent cross-
cutting concerns in
message contracts.

• Data Aspects are
included and
configured in view
definitions.

• Data Aspects
contributed
“properties” to the
XML schema and API

Modelpedia - Model
Documentation

Collaborative Web-Based tool for model documentation.

Shows relationships among models entities, across domains.

Searchable data dictionary includes entity types, fields, message
contracts.

Browse generated artifacts, including code and schema

Future plans:

�Tie-in to model publishing lifecycle

�User-contributed content

�Wiki markup

�Discussions, change requests

�Hyperlinked diagrams

�Usage Statistics

Evolving Features

Cross-Domain Modeling and Code-Gen

Versioning

Advanced Validation

SOA Toolkits Integration

Advanced Modeling Features

Model Mapping and Transformation

Evolution: Cross-Domain
Modeling

Goal: Enable Re-use of model constructs across domains:

� Inherit from entity in another domain.

� Reference an entity in another domain.

� Define a message contract for an entity in another domain.

Architectural Requirements:

� Federated enterprise model repository

� Cross-domain modeling in MODeX Designer

� Cross-domain code generation

� Cross-domain runtime marshaling and validation.

� Model lifecycle management.

Evolution: Versioning

Trade v1 v1.1 v2

Id M M D

Symbol M M M

Market M M O

Quantity O M

Price O M

 M = Mandatory

 O = Optional

 D = Deleted

Id*

Symbol*

Market*

Trade [v1]

Id*

Symbol*

Market*

Quantity

Price

Trade [v1.1]

Id

Symbol*

Market

Quantity*

Price*

Trade [v2]

can bridge
cannot
bridge

• Minor versions can
add optional fields.

Runtimes support
minor version
bridging, and
unknown field data
pass-through.

• Major versions can
completely alter
fields: add, remove,
delete, change
optional/mandatory
status.

Does not work with
existing contracts,
but tooling can allow
smoother major
version migration.

• Modeling tool
maintains multiple
copies of Entity for
every version, minor
or major.

Evolution: Advanced Validation
MODeX validation constraints are embedded in
message contracts.

All validation happens in-memory, independent
of wire format.

Available equally to message sender and
receiver, runtime is configurable to perform
selected validations on send or receive.

Validation produces detailed list of violations
that can be inspected, logged, transmitted in a
message.

Expression Constraints

� Pluggable expression dialects, default is
based on Python expression syntax.

� Executes cross-platform

� Allow arbitrarily complex validation
expressions.

Rule Constraints

� Pluggable rules engine, default is JBoss
Rules

� Forward-chaining rules engine allows
rules to enrich the data, fire other rules
based on enriched data.

Evolution: SOA Toolkits
Integration

Phase 1 (Complete):

Interop Message Format

Phase 2 (Planned):

MarshalStack Integration with CxF and WCF

Phase 3 (TBD):

MODeX Types in WSDL Contracts

SOA Toolkits Phase 1

Interop Message

Format

* New message

schema generated

by MODeX Designer

* Specifically

designed to produce

a straightforward

API when used with

CxF/JAXB and

WCF/Data Contract

Serializer

* Pure WSDL

solution, with no

runtime dependency

on MODeX

SOA Toolkits Phase 2

MarshalStack Integration
with CxF and WCF

* MODeX MarshalStack

runtime plugs in as a

first-class marshalling/

serialization option.

* Generated entity

interfaces can be used

as WebMethod

arguments and return

types.

* Provides full benefits

of MODeX on the

server:

Entity-Centric API, Full

Fidelity Messaging,

Advanced Validation,

Field Promotion

* Service consumers

can choose pure WSDL

import with Interop

message format, or can

use MODeX GDAs with

MarshalStack.

SOA Toolkits Phase 3

MODeX Types in WSDL
Contracts

* Types section of

WSDL expressed in

terms of MODeX models

and message contracts.

* Service exposes this

WSDL on a separate

port from standard,

schema-typed WSDL.

* IDE tooling imports

MODeX service

contracts, required

MODeX GDAs, and

endpoint

implementations that

use the GDAs and

MarshalStack

transparently.

MODeX Model

Interop Schema

CxF Service with JAXB

XJC

JAX-WS Annotated Service

Endpoint Interfaces

JAXB-Annotated

Entity Classes

Standard

WSDL

(XML Schema Types)

SVCUtil

Standard WCF Client

WSDL2Java

Data Contracts

Service Contract

Proxies

Standard CxF Client

JAX-WS Annotated

Service Proxies

JAXB-Annotated

Entity Classes

Types Section

CxF Service with MarshalStack

JAX-WS Annotated Service

Endpoint Interfaces

MODeX GDA

Entity Classes

MODeX

WSDL

(MODeX Types)

MODeX WCF Client

Service Contract

Proxies

MODeX GDA

Entity Classes

MODeX CxF Client

JAX-WS Annotated

Service Proxies

MODeX GDA

Entity Classes

MODeX Design-

Time Utilities

MODeX Design-

Time Utilities

Types Section

Evolution: Advanced Modeling Features

Design goal: provide a conceptual modeling language optimized for enterprise
data.

� Capture essential technology-independent semantics.

� Map cleanly to multiple data representations.

� Facilitate human-to-human communication and documentation.

Features:

Model/Contract Separation

Rich, Extensible Constraints

Optional Rules Engine Integration

Borrows from multiple Multiple Paradigms:

� Object Oriented: References, Inheritance, Associations*

� AOP: Data Aspects

� Relational: Uniqueness Constraints, Semi-Static Enumerations, Queries*

� XML Schema: Derive by Restriction*

� Ontology: Multiple Classification*

* Proposed

Evolution: Model Mapping and
Transformation

MODeX

Conceptual

Model

.NET Class API

Java Class API

XML Schema

Relational / ER

Model

FIX Message

Schema

KDB Data

Structures

Bidirectional solution supports
forward code generation or
code-first mapping.

Maplet architecture maps a
MODeX model to a technology-
specific representation.

Maplet enables code gen or
runtime transformation between
model instances.

Captures syntactic and
topological transformations.

Allows N-way transformations
and runtime validation.

Import and Synchronization
capabilities for design-time
management.

Applications in Financial Services

Enterprise Data

� Shared, authoritative data definitions

� Centralized services

� Client-side API for enterprise data consuming applications.

Sales and Trading

� Common trade lifecycle model

� Data integrity controls with business transparency

� Seamless cross-platform interop

Investment Banking

� Improved business/IT collaboration, transparency

� SOA governance, consistent standards.

� Significantly improved reuse, developer productivity, time to
market

Experience with Eclipse
Technology

• Extremely bright, engaged community

• Highly evolved technology

• Center of activity and thought leadership for model-driven
software development

• Significant learning curve to technology

• High investment, high payoff

Recap: How MODeX Addresses
Enterprise Messaging

Challenges
• Elevates the model to a first-class

form of source code.

• Partitions enterprise information
into domains of manageable
scope, with clear ownership and
managed lifecycle.

• Reduces integration barriers by
defining message payloads in
terms of a consistent information
model.

• Provides an expressive, graphical
language for message protocol
definition.

• Provides multiple views of
information depending on
lifecycle and messaging context.

• Enables orderly model evolution

with entity-level versioning.

• Preserves object topology,

including shared references and

cycles.

• Uses schema validation where

appropriate, but allows for rich,

rules-based validation where

required.

• Hides the wire format from

developers, providing a path to

more efficient wire

representations.

• Reduces impedance mismatch

between messages and objects.

Q&A

Appendix: Positioning Relative to
Other Technologies

JAXB

SOA

CASE

MODeX and JAXB

Limited to a single
language.

Model is inferred
from code, all
other
manifestations
suffer.

Generic model
inference does not
encourage standard
implementation.

Enforces one-to-
one mapping of
Java class to XSD
type.

JAXB

Mapping

Model

Annotated

Java Classes

Annotated

XML Schema

Java Objects

XML Message

Runtime

Marshaller

Model

inferrence

Model

inferrence

MODeX

Domain

Model

Generated

Domain API

(Java, C#, …)

XML Schema

Objects

XML Message

Runtime

Services

Code

Generation

Code

Generation

MODeX and JAXB

Putting the model
at the center gives
the power of
abstraction.

Code generation
guarantees
standardized
implementations.

Model captures rich
semantics
encompassing all
target languages.

Allows mapping a
single class to
multiple XSD types.

Supports multiple
languages.

MODeX and
Service Oriented Architecture

(SOA)
• SOA promotes reuse and transparency.

- Services are composable building blocks for applications.

- BPEL, SCXML & other orchestration languages build on this.

- Service catalog forms a business-oriented vocabulary of available functionality.

- SOA organizes the verbs.

• Problem: what about the nouns?

- XML Schema fails as a modeling language.

- Databases tend to be specialized, don’t translate directly to services.

- Object models are application-specific.

- Result: Impedance mismatch at the boundaries, very little reuse

• MODeX provides the missing plank in the SOA platform.

- Helps you organize around a shared set of entity definitions.

- Expresses message contracts in terms of these entity definitions.

- Schema and programmatic models are tied directly to the data definitions.

- Frees SOA from dependencies on today’s XML, WSDL and WS-* base technologies.

Model-Driven Development and
CASE

Broad applicability to distributed
software architecture

Limited cross-platform design

Sophisticated model-to-model and
model-to-code transformation
pipeline

Primitive, inflexible code
generation

Rich graphical modeling and IDE
integration

Monolithic design

Domain-specific modeling
languages

General-purpose modeling

Focus on meaningful abstractionFocus on round-trip engineering

Model-Driven DevelopmentCASE

"Isn't this the same promise that CASE tools were making in the

1980's and '90's? If it didn't succeed then, why do we think we can

make it work now?"

