
Sybase Confidential Propriety. © 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0

STP Deployment
Framework

Rob Cernich – April 6, 2006

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 2

Introduction

•This framework defines a set of API’s and extension points
for the definition of profiles that aid in the building,
packaging, configuration and deployment of artifacts to
runtime environments.

•This framework builds on top of the DTP connection profile
framework that defines connection definitions for server
environments.

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 3

Introduction

•Deployment Framework
 Developers define extensions for identifying and working with

packages within the workspace

 Developers register deployment extensions against connection
profiles

 Deployment extensions may define package constructors for
creating deployable packages from logical or abstract package
definitions

•Deployment Profile Editor
 Allows users to target packages for deployment to specific servers

 Allows users to tailor package configuration for deployment to
specific servers

 Provides a mechanism for creating repeatable deployments

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 4

Workspace
Resources

Deploy Driver
Extension

Overview

Package
Profile

Logical
Package
Extension

Package
Constructor

Deploy
Driver

Package

Physical
Package
Extension

Connection
Profile

Server

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 5

Overview (cont’d)

•User creates a package profile (a file describing the contents, etc.
for a package)
•A logical package extension identifies the package profile to the
framework. This information is used to help locate a package
constructor.
•A package constructor is used to create a deployable package
•A physical package extension identifies the deployable package
to the framework. This information is used to help locate a deploy
driver.
•A deploy driver is used to identify connection profiles to which
the package may be deployed and to deploy the package to a
server represented by a connection profile.

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 6

Package Support

•Logical Package Extension
 Might also be considered “abstract” or non-deployable

packages
 Identify items to be included in a package for deployment
 May also include configuration details related to packaged

items, including global settings
 Present framework with a technology type identifier (for use in

locating package constructors)

•Physical Package Extension
 Might also be considered “concrete” or “deployable” packages
 Present framework with a server type identifier (for use in

locating deployment drivers)

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 7

Deploy Support

•Deployment Driver Extension
 Adds deployment capabilities to a connection profile
 Presents framework with a server type identifier (e.g. Tuscany,

JBI-SCA)
 May include a list of package constructors
 Package Constructors

 Used for constructing deployable packages from logical package
definitions (identified through technology type)

 Typed to specific technology type and version (i.e. package
constructors that support specific versions of an underlying
technology; e.g. SCA v. 0.9, SCA v. X.x, SCA v. 0.9-X.x, etc.)

 Also provide validation of logical packages based on a targeted
server (e.g. does the specified target support BPEL services)

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 8

Typing

•Technology Types
 Allows packages to be typed as belonging to a specific technology type (e.g.

SCA v. 0.9) {Note, in practice, these are actually used to identify logical
package types.}

•Server Types
 Types physical packages to be typed to a specific version and class of

server (e.g. Tuscany WAR, JBI-SCA)
 Types deployment drivers as supporting a specific version and class of

server

•Map
 Allows specific version and class of server to be mapped as supporting a

specific version and class of technology
 Used by framework to tie package constructors (identified through a server

type) to logical packages (identified through technology types); e.g.
constructing a Tuscany WAR from an SCA 0.9 assembly {See above,
technology type ~ logical package type}

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 9

Object Model

0..1

0..*

1..1

1..1

0..* 1..1

0..1

0..*

0..* 0..*

0..1

0..*

1..1

0..1

0..*

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

0..1

0..*

1..1

1..1 0..*

0..*

1..1

1..1

1..1

0..* 1..1

0..*

1..1

0..*

1..1

0..*

1..1

<<instantiate>>

Package

+
+
+

getName ()
getDescription ()
getFi le ()

: String
: String
: IFi le

Physical PackageLogical Package

Configurable Package

Technology Type

- version : Version

Server Type

- version : Version

Server Technology Map

- serverVersion : Version

Technology Definition

- id : String

Server Defini tion

- id : String

Supported Technology Type

-
-

minVersion
maxVersion

: Version
: Version

Package Configuration

+
+

validate ()
dispose ()

: IStatus[]
: void

Package Extension

-
-

id
fileExtension

: String
: String

+
+

supportsFi le (IFi le file)
adaptFile (IFile file)

: boolean
: Package

Deploy Target

+
+

supportsServer (Server_Type type)
createDeploySession ()

: boolean
: Deploy_Session

Physical Package Extension

+ supportsServer (Server_Type type) : boolean

Supported Server Type

-
-
-

minVersion
maxVersion
versionMatchRule

: Version
: Version
: MatchRule

+ supportsServer (Server_Type type) : boolean

Logical Package Extension

+ supportsTechnology (Technology_Type type) : boolean

Configurable Package Extension
Package Configuration Manager

+
+
+

createPackageConfiguration (Logical_Package pkg)
createPackageConfiguration (Logical_Package pkg, InputStream is)
serial izePackageConfiguration (Package_Configuration configuration, OutputStream os)

: Package_Configuration
: Package_Configuration
: void

Configuration Page Factory

+ contribute (PreferenceManager pm, Package_Configuration configuration) : boolean

Deploy Driver Extension

-
-

id
name

: String
: String

+
+
+

isTransactional ()
supportsServer (Server_Type type)
adaptProfile (Connection_Profile profile)

: boolean
: boolean
: Deploy_Target

Package Constructor Extension

+
+
+

createPackage (Logical_Package pkg, Creation Context context, Package_Configuration configuration)
supportsPackage (Logical_Package pkg)
val idatePackage (Logical_Package pkg, Package_Configuration configuration, Deploy_Target target)

: Package Output
: boolean
: IStatus[]

Connection Profi le
(<ConnectionProfi leOOM>)

+
+
+
+

connect ()
disconnect ()
getProperties (String type)
setProperties (String type, Properties props)

: void
: void
: Properties
: void

Connection Profile Provider
(<ConnectionProfileOOM>)

-
-
-

id
name
icon

: String
: String
: Image

+ getConnectionFactory (String type) : Connection_Factory_Provider

Deploy Session

- serverVersion : Version

+
+
+

preDeployCheck (Package Output output)
deploy (Package Output output)
dispose ()

: IStatus[]
: void
: void

Transactional Deploy Session

+
+
+

beginDeploy ()
commitDeploy ()
abortDeploy ()

: void
: void
: void

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 10

User Interface

•Deployment File Editor
 Allows packages to be targeted to specific servers for deployment
 Allows logical packages to be configured specially for deployment to specific servers
 Allows packages to be targeted to more than one server
 Allows for deployment of multiple packages
 Restricts available targets based on package type and server support

•Actions
 Create package action

 Available for workspace files that can be identified as logical packages
 Allows user to create a physical package from logical package definition
 If multiple package constructors exist, user is prompted to select one (based on the name of

the server type; e.g. Tuscany WAR, JBI-SCA, etc.)
 Deploy package action

 Available for workspace files that can be identified as logical or physical packages
 Prompts user for server (list is comprised of servers applicable to the package)

 Execute deployment action
 Available for deployment files within workspace
 Executes the deployment defined within the file (creates deployable packages; deploys

packages to target servers)

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 11

Eclipse Integration

•Plugins delivered
 …deploy.core

•Extensions
 org.eclipse.ui.editors
 org.eclipse.ui.newWizards
 org.eclipse.ui.popupMenus

•Extension Points
 ….deploymentExtension

 logicalPackage
 configurablePackage
 physicalPackage
 deployDriver
 technologyDefinition
 serverDefinition
 technologyMap

•Classes Available
core

 Interfaces for interacting with extensions
 Package extension helper classes

core.adapters
 Adapter classes for converting between model elements and deployment objects
 Adapter classes for converting between resource objects and deployment objects

core.operations
 Objects for executing common deployment operations

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 12

External Components

•Other Eclipse Components:
 Connection profile framework from Data Tools Platform project

(DTP)

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 13

Basic API

•How is it used?
 Extension points

deploymentExtension
 logicalPackage
 configurablePackage
 physicalPackage
 deployDriver
 technologyDefinition
 serverDefinition
 technologyMap

 Classes
core.DeploymentExtensionManager
core.adapters.DeployAdapterFactory
core.operations.CreateDeployPackagesOperation
core.operations.ExecuteDeploymentOperation
core.ui.editors.DeployEditor

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 14

I18N

•Standard string/image resource handling. Nothing
exciting.

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 15

Current Status

•Functionality Summary
 Provides a UI for creating and managing deployment profiles.
 Provides a platform that can be easily extended by other components (e.g.

JBI, JEE, etc.)
 Strengths

 Allows users to create repeatable deployments.
 Supports deployment of heterogeneous applications.

•Shortcomings
 Does not allow overridden package configurations to be restored to their

default values
 Packages are created for each execution
 Credentials used for connecting to servers are stored in the connection

profile
 Should support execution in a headless environment (e.g. Ant, Maven)

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 16

Future Functionality

•New
 Reuse previously created packages when executing deployments (determine

which packages need to be rebuilt)
 Enable users to restore default package configurations in editor
 Implement rollback capability for failed deployments
 Prompt for UID/PWD when connecting (currently, profiles must be configured

using credentials with a deployment role)
 Support incremental deployment
 Support synchronizing deployed packages with workspace resources
 Support “undeploy”

•Cleanup
 Server-Technology mapping needs to be cleaned up/consolidated
 Technology type should be renamed; these actually correspond with

package definitions
 Package validation techniques need to be consolidated

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 17

Testing Strategy

•Current Testing Strategy
 Basic automated tests

 Manually driven minimal acceptance tests

•Needs work…
 Needs more automated tests ***

© 2006 Sybase, Inc., all rights reserved. made available under the EPL v1.0 18

Bug Fixing

•Suggestions for bug fixing
 Code should be pretty straightforward (there haven’t been many

bugs logged against either the editor or framework)

•Debug tips
 Operation classes are the main entry points for most deployment

actions

 Adapter classes are responsible for adapting objects to/from their
respective deployment objects (e.g. from IFile to IPackage,
IDeployTarget to IConnectionProfile)

