
Modelling Support for Quality of Service

 Eclipse ECESIS Project!1

Modelling Support for
Quality of Service

Department for Cooperative and Trusted Systems
Information and Communication Technology,

SINTEF, Forskningsveien 1, N-0314 Oslo, Norway
http://www.sintef.no

Modelling Support for Quality of Service

 Eclipse ECESIS Project!2

Context of this work

• The present courseware has been elaborated in the context of the
MODELWARE European IST FP6 project (http://www.modelware-
ist.org/).

• Co-funded by the European Commission, the MODELWARE project
involves 19 partners from 8 European countries. MODELWARE
aims to improve software productivity by capitalizing on techniques
known as Model-Driven Development (MDD).

• To achieve the goal of large-scale adoption of these MDD
techniques, MODELWARE promotes the idea of a collaborative
development of courseware dedicated to this domain.

• The MDD courseware provided here with the status of open
source software is produced under the EPL 1.0 license.

http://www.modelware-ist.org/bb2Forum/index.php

Modelling Support for Quality of Service

 Eclipse ECESIS Project!3

Quality

• Software architecture defines a evolutionary
envelope within which acceptable quality is maintained
• But what kind of qualities are affected?

• Qualities define the “goodness” of the system (or its
architecture)

• Heaps of “-ilities”
• Subjective vs. objective quality
• Design-time vs. run-time qualities

Modelling Support for Quality of Service

 Eclipse ECESIS Project!4

effectiveness productivity safety

quality in use

satisfaction

ISO 9126 - Software Product Quality

• Quality in use - related to a specific context of use
• effectiveness – the capability of the software product to enable users to

achieve specified goals with accuracy and completeness in a specified context
of use.
• productivity – the capability of the software product to enable users to expend

appropriate amounts of resources in relation to the effectiveness achieved in
the specified context of use.
• safety – the capability of the software product to achieve acceptable levels of

risk of harm to people, business, software, property or the environment in a
specified context of use.
• satisfaction – the capability of the software product to satisfy users in a

specified context of use.

Modelling Support for Quality of Service

 Eclipse ECESIS Project!5

ISO 9126 - External and Internal Quality Metrics

• Irrespective of
context of use

functionality reliability usability efficiency maintainability

external and internal quality

portability

suitability
accuracy
interoperability
security

functionality
compliance

maturity
fault tolerance
recoverability

reliability
compliance

understandability
learnability
operability
attractiveness

usability
compliance

time behaviour
resource utilisation

efficiency compliance

analysability
changeability
stability
testability

maintainability
compliance

adaptability
installability
co-existence
replaceability

portability
compliance

Modelling Support for Quality of Service

 Eclipse ECESIS Project!6

Functionality

• Suitability
• The capability of the software

product to provide an
appropriate set of functions
for specified tasks and user
objectives.

• Accuracy
• The capability of the software

product to provide the right or
agreed results or effects with
the needed degree of
precision.

• Interoperability
• The capability of the software

product to interact with one
or more specified systems.

• Security
• The capability of the software

product to protect information
and data so that unauthorised
persons or systems cannot
read or modify them and
authorised persons or systems
are not denied access to them

• Functionality compliance
• The capability of the software

product to adhere to
standards, conventions or
regulations in laws and similar
prescriptions relating to
functionality.

• The capability of the software product to provide functions which
meet stated and implied needs when the software is used under
specified conditions.

Modelling Support for Quality of Service

 Eclipse ECESIS Project!7

Reliability

• Maturity
• The capability of the software

product to avoid failure as a
result of faults in the
software.

• Fault tolerance
• The capability of the software

product to maintain a
specified level of performance
in cases of software faults or
of infringement of its
specified interface.

• Recoverability
• The capability of the software

product to re-establish a
specified level of performance
and recover the data directly
affected in the case of a
failure.

• Reliability compliance
• The capability of the software

product to adhere to
standards, conventions or
regulations relating to
reliability.

• The capability of the software product to maintain
specified level of performance when used under specified
conditions.

Modelling Support for Quality of Service

 Eclipse ECESIS Project!8

Usability

• Understandability
• The capability of the

software product to enable
the user to understand
whether the software is
suitable, and how it can be
used for particular tasks and
conditions of use.

• Learnability
• The capability of the

software product to enable
the user to learn its
application.

• Operability
• The capability of the software

product to enable the user to
operate and control it.

• Attractiveness
• The capability of the software

product to be attractive to
the user.

• Usability compliance
• The capability of the software

product to adhere to
standards, conventions, style
guides or regulations relating
to usability.

• The capability of the software product to be understood,
learned, used and attractive to the user, when used under
specified conditions.

Modelling Support for Quality of Service

 Eclipse ECESIS Project!9

Efficiency

• Time behaviour
• The capability of the software

product to provide appropriate
response and processing times
and throughput rates when
performing its function, under
stated conditions.

• Resource utilisation
• The capability of the software

product to use appropriate
amounts and types of
resources when the software
performs its function under
stated conditions.

• Efficiency compliance
• The capability of the

software product to adhere to
standards or conventions
relating to efficiency.

• The capability of the software product to provide
appropriate performance, relative to the amount of
resources used, under stated conditions.

Modelling Support for Quality of Service

 Eclipse ECESIS Project!10

Maintainability

• Analysability
• The capability of the

software product to be
diagnosed for deficiencies or
causes of failures in the
software, or for the parts to
be modified to be identified.

• Changeability
• The capability of the

software product to enable a
specified modification to be
implemented.

• Stability
• The capability of the software

product to avoid unexpected
effects from modifications of
the software.

• Testability
• The capability of the software

product to enable modified
software to be validated.

• Maintainability compliance
• The capability of the software

product to adhere to
standards or conventions
relating to usability.

• The capability of the software product to be modified.
Modifications may include corrections, improvements or
adaptation of the software to changes in environment, and
in requirements and functional specifications.

Modelling Support for Quality of Service

 Eclipse ECESIS Project!11

Portability

• Adaptability
• The capability of the

software product to be
adapted for different
specified environments
without applying actions or
means other than those
provided for this purpose for
the software considered.

• Installability
• The capability of the

software product to be
installed in a specified
environment.

• Co-existence
• The capability of the software

product to co-exist with other
independent software in a common
environment sharing common
resources.

• Replaceability
• The capability of the software

product to be used in place of
another specified software
product for the same purpose in
the same environment.

• Portability compliance
• The capability of the software

product to adhere to standards or
conventions relating to portability.

• The capability of the software product to be transferred
from one environment to another.

Modelling Support for Quality of Service

 Eclipse ECESIS Project!12

Development-time qualities (from Catalysis)

• Affected by architecture:
• Modifiability- Can the system be modified efficiently?
• E.g., low coupling and high cohesion

• Reusability - Are there units in the system that can are
candidates for use elsewhere?
• E.g., does the system use standards?

• Portability - The ability to change platform
• E.g., layering

• Buildability - Is it easy to implement?
• E.g., use existing frameworks

• Testability - Can one easily define test scenarios?
• E.g., precise requirement specifications

Modelling Support for Quality of Service

 Eclipse ECESIS Project!13

Runtime qualities (from Catalysis)

• Affected by architecture:
• Functionality - does the system assist users in their tasks?
• Usability - is it intuitive to use for all users?
• Performance - does it perform adequately when running?
• E.g., response time, transaction volume, ...

• Security - does it prevent unauthorised access?
• Reliability and availability - is it available and correct over time?
• Scalability - can it cater for increased volume?
• Upgradability - can it be upgraded at runtime?

• Single key quality: Conceptual integrity of an
architecture

Modelling Support for Quality of Service

 Eclipse ECESIS Project!14

Quality of Service (QoS)

• QoS is a general term that covers system performance,
rather than system operation (i.e., functionality)

• Extra-functional properties
• degrees of satisfaction as opposed to satisfied / not satisfied

• Examples:
• availability, reliability, precision, fault-tolerance, capacity,

throughput, delay, …

• Most common for multimedia, command and control,
simulations, distributed systems, …

• Less common for information systems
• there are needs! (transaction-based, security aware, etc.)

Modelling Support for Quality of Service

 Eclipse ECESIS Project!15

Different Abstractions

Hardware

Operating
system

Application
interface

Application
subsystem

Transport
subsystem

Networking
system

User User QoS

Application QoS

Transport QoS

Network QoS

System QoS

Hardware QoS

• Peer-to-peer vs. layers

• QoS concepts on
different layers are
different, but related
• QoS mapping

Modelling Support for Quality of Service

 Eclipse ECESIS Project!16

Quality of Service Support in Infrastructures

• Some is already available
• Networks and protocols (IPv6, RSVP, ATM, …)
• Real time operating systems (Chorus, VxWorks, …)
• Middleware (CORBA implementations such as COOL, ACE, …)

• Unified and comprehensive QoS architecture is still a
hot research topic

• Several stakeholders
• End users, system operators, network providers, resource

owners, ...

• From a software engineering perspective, a unified
computational model is needed
• As target for model transformations / code generation

Modelling Support for Quality of Service

 Eclipse ECESIS Project!17

QoS Management

• The activities needed to support monitoring, control and maintenance
of QoS
• Spectrum from static to dynamic management
• Static
•Designed and configured into the system
•QoS are not monitored or controlled

• Dynamic
•Adapts to changes
•Monitoring, resource allocation, adaptation of applications (e.g., caching), re-routing, ...

• Best-effort QoS
• Threshold or compulsory

• Guaranteed QoS
• Statistical variations

Modelling Support for Quality of Service

 Eclipse ECESIS Project!18

Problem space Solution space InfrastructureQoS
reqs. QoS

support

Quality of Service Specifications to Support QoS management

• QoS support in applications requires methodological support during
development
• How to match requirements and solutions

• QoS is a concern of many stakeholders
• Need to include QoS specification into architectural descriptions

• The Big Question: How do changes in environment affect the agreed
upon QoS?
• I.e., is adaptation needed?

Modelling Support for Quality of Service

 Eclipse ECESIS Project!19

Quantification

• How to measure and quantify quality?
• Commonly agreed reference units (objective) versus ordinal

rankings (subjective)

• Main problem: From subjective to objective

• Vagueness in classification of observations
• Vagueness is not ambiguity or generality
• Sorites paradox (The “slippery-slope” argument)
• Vagueness-as-ignorance or gray areas (fuzzy logic)?

• Commonly chosen approach: Stability threshold

Modelling Support for Quality of Service

 Eclipse ECESIS Project!20

UML Profile for QoS - overview

<<metamodel>>
QoSCharacteristics

<<metamodel>>
QoSConstraints

<<metamodel>>
QoSLevels

Modelling Support for Quality of Service

 Eclipse ECESIS Project!21

UML QoS profile

 <<metamodel>>

QoSFramework

<<metaclass>>
::UML2.0::Logical View::UML::Classes::Kernel::Class

<<metaclass>>
::UML2.0::Logical View::UML::Classes::Kernel::Package

<<metaclass>>
::UML2.0::Logical View::UML::Classes::Kernel::Property

<<stereotype>>
QoSCharacteristic

<<stereotype>>
QoSCategory

<<stereotype>>
QoSDimension

<<metaclass>>
::UML2.0::Logical View::UML::Classes::Kernel::StructuralFeature

invariant : boolean

statisticalQualifier : QoSStatisticalAttribute
direction : DirectionKind
unit : string

<<Profile>>
QoSProfile

<<realize>>

<<referenceMetamodel>>

UML 2.0

<<metamodel>>

<<ModelLibrary>>
QoSCatalog

<<QoSCategory>>
Performace

<<QoSCategory>>
Functionality

<<QoSCategory>>
Dependability

<<QoSCategory>>
Coherence

<<QoSCategory>>
Throughput

<<QoSCategory>>
Latency

<<QoSCategory>>
Efficiency

<<QoSCategory>>
Integrity

<<QoSCategory>>
Security<<QoSCategory>>

Reliability
<<QoSCategory>>

Availability

<<QoSCategory>>
Demand

<<instantiate>>

<<apply>>

QoS-Aware Model
<<instantiate>>

<<apply>>

<<use>>

Modelling Support for Quality of Service

 Eclipse ECESIS Project!22

QoS characteristics

re liability

fault-tolerance

avai labi lity

connection-availabili ty processing-availability

<<QoSDimension>>
theAvailability

0..1

1

<<QoSDimension>>
theFT

0..1

0..1

Modelling Support for Quality of Service

 Eclipse ECESIS Project!23

QoS value

<<QoSValue>>
Availability_of_remote_server:processing-availability

time-between-failures=10
time-to-repair=1

Modelling Support for Quality of Service

 Eclipse ECESIS Project!24

QoS contract

M - ACM
<< Capability >>

CPDLC Request Link
GroundClient

M - ACM
<< Capability >>

CPDLC Request Link
GroundClient AirborneClient

<< QoS contract >> << QoS contract >>
 context reliability inv

 self.expected-number-service-failures = 2 and
 self.theAvailability.time-to-reapir = 100 and

 self.theAvailability.time-between-failure = 2000

Modelling Support for Quality of Service

 Eclipse ECESIS Project!25

Another contract

DataDisplayer

TelemetrySystem

Display

DataDsiplayerInterface

DisplayInterface

<<QoSRequired>>
{context TelemetryQoS4SAGlobalLatencies inv:
 relativeMaximumLatency < 10.0}

<<QoSOffered>>
{context TelemetryQoS4SAGlobalLatencies inv:
 relativeMaximumLatency < 8.0}

<<QoSRequired>>
{context TelemetryQoS4SAGlobalLatencies inv:
 relativeMaximumLatency < 5.0} <<QoSOffered>>

{context TelemetryQoS4SAGlobalLatencies inv:
 relativeMaximumLatency < 4.0}

Modelling Support for Quality of Service

 Eclipse ECESIS Project!26

QoS behaviour (adaptation)

<<QoSLevel>>
DetailedRecording

<<QoSLevel>>
Recording

<<QoSLevel>>
MinimumRecording

<<QoSRequired>>
{context TelemetryQoS4SAActivityResourceUtilization inv:
 mean-case-request = 100}

<<QoSRequired>>
{context TelemetryQoS4SAActivityResourceUtilization inv:
 mean-case-request = 50}

<<QoSRequired>>
{context TelemetryQoS4SAActivityResourceUtilization inv:
 mean-case-request = 10}

<<QoSOffered>>
{context Recordable inv:
 AllocatedQuota = 10}

<<QoSOffered>>
{context Recordable inv:
 AllocatedQuota = 20}

<<QoSOffered>>
{context Recordable inv:
 AllocatedQuota = 5}

<<QoSTransition>>
configure[level = minimum]

<<QoSTransition>>
configure[level = maximum]

<<QoSTransition>>
configure[level = maximum]

<<QoSTransition>>
configure[level = normal]

Modelling Support for Quality of Service

 Eclipse ECESIS Project!27

Conclusions

• QoS should be considered during software design

• QoS should be specified to support QoS management

• QoS specifications should be orthogonal to software
architecture
• but may influence it

