The following serves as the minutes from the COSMOS Face to Face held at the Computer Associates Labs in Toronto, Canada, May 8-10, 2007.

Attendees:

Tuesday, May 8

Computer Associates

Chris Craddock, Distinguished Engineer, Office of the CTO

Wilson MacDonald, VP, Senior Technology Strategist, Office of the CTO

Serge Mankovskii, Research Staff Member, CA Labs

Jimmy Moshin, Development Manager, MR2 Project

William Muldon, Div. Assistant Vice President, Development, MR2 Project

Martin Simmonds, Principle Software Engineer, MR2 Project

Compuware

Don Ebright, Software Architect

Joel Hawkins, Software Architect

IBM

Sheldon Lee-Loy, Development, COSMOS Project

Hubert Leung, Development, COSMOS Project

Ali Mehregani, Development, COSMOS Project

Valentina Popescu, Development, COSMOS Project

Harm Sluiman, Distinguished Engineer, Rational, CTO

Mark Weitzel, Sr. Technical Staff Member, COSMOS Project

Wednesday, May 9 and Thursday May 10

All of the above were present with the following exceptions:

Wilson MacDonald, CA

Harm Sluiman, IBM

We started Tuesday with introductions of the team members, an overview set of some of the problems each company is facing, and a high level set of objectives that we would like to get out of COSMOS.

Chris, from Computer Associates started by describing one of the more difficult problems they are facing in terms of management data integration. Like many companies, CA has a number of disparate data bases that contain different “aspects” of management data. This includes configuration data, monitored data, event data, etc. There was an initial effort at CA to consolidate all of this information into a single data store, called “the management database”.

CA is now undertaking a different approach. Rather than try to consolidate their within a single database, they would like to take a more loosely coupled approach and allow the data to remain in its existing data stores and expose it through a well defined query framework. This new project, Management Repository 2 (MR2), is essentially, a management fabric that sends events with IDs and pointers to data. Their intention is to use the data collection and query framework implemented in COSMOS as the basis for the integration of the MR2 project.

Don Ebright from Compuware discussed a similar situation. While Compuware does not have the proliferation of databases of CA, they nonetheless are wrestling with data integration problems. Compuware also would like to promote open interfaces and APIs as a mechanism for being more open with other management tools, both internally and externally.

In addition to surfacing data through a common query framework, Don also indicated that getting data into COSMOS through existing data collectors was important, and having a reference set of data collectors, e.g. those from TPTP, would be sufficient to accomplish the initial goals. Don is also looking at how to balance the long term vision of the project--standards based systems management—with incremental deliveries.

Mark Weitzel from IBM discussed the importance of providing “out of the box” value to the consumers of COSMOS. While it is important to make quality frameworks for data collection, query, etc. too much framework without delivering practical value would inhibit adoption. Further, he raised the topic of having an agreed upon set of APIs that sit on top of a query layer. These APIs can serve as the basis for an entry level set of function that can be reused within commercial applications.

Mark also discussed how to leverage the current work within TPTP, especially the data formats for the event and statistical objects. Ideally, this would allow both TPTP and COSMOS to share the same data collectors, the same database persistence, as well as the same data objects. This would provide a basis for a completely open, simple end-to-end solution that covers the instrumentation and testing of resources as well as their management.

Discussion on Data Collection

The COSMOS team worked under the following assumptions relative to data collection:
1 There are a number of existing agent technologies available, both in open source and through commercial providers. COSMOS does not want to introduce “yet another agent”. Therefore, TPTP would provide the initial implementation of some of the agents that would be leveraged by COSMOS.

2 Of the data that can be collected by TPTP, we will focus only on event data collected from logs in CBE format, events received via WS-Notification in the WSDM Event Format (WEF), and statistical information (e.g. perfmon data).

3 For data types which TPTP supports, we will share as much of the pojo models, database schema, and APIs with the TPTP project as possible. For example, TPTP already has a CBE library that is POJO based (no EMF). Likewise, Apache Muse contains a POJO WEF library.

4 There will be a default implementation of a database for storing event and statistical data. The COSMOS team would like to leverage the TPTP implementation.

5 The COSMOS data collection framework must be able to accommodate existing data stores. For example, both CA and Compuware have existing information that will be made available within the framework.

6 Because COSMOS must accommodate multiple data stores, there is a need to have a flexible query interface. There will be standard query patterns that COSMOS provides and we will agree on the formats of the arguments and return types.

7 On top of this query interface, a set of “helper” or “convenience” APIs will be exposed. The API will be used by the data visualization layer as the mechanism to drive the reports. These APIs will also facilitate commercial adoption of COSMOS generated reports because it will be necessary to provide only an implementation of these APIs.

8 The query APIs will be exposed using Web services. In the case where these services maintain state, and need to be managed, they will be compliant with the Web Services Distributed Management specification.

9 While many of the constructs in COSMOS make use of the Web Services Distributed Management standard, these will evolve into being compliant with WS-Unified Management as that specification matures, is ratified as a standard, and an open source reference implementation becomes available.

Figure 1 below represents the most basic “block-i-tecture” for COSMOS. The green half moons and circles represent web service interfaces. The tan one represents input from various protocols and data formats, e.g. CBE & WEF and statistical data.

[image: image1.png](e
Query AP

Figure 1

Event Data

Through the Generic Log Adapter, TPTP can emit log information in the format of Common Base Events (CBE). There is a simple POJO model in TPTP that we will use when receiving this data. The database schema for CBE will be based on the one currently available in TPTP. The CBE POJOs are in the TPTP CVS in org.eclipse.tptp.platform.logging.events, in the folder src.cbe101.

WSDM endpoints emit events in the WSDM Event Format (WEF). WEF is considered the successor to CBE and shares a similar structure. As an initial strategy, WEF events will be converted to CBE and persisted in the same structure.

1 It needs to be determined if there is any data loss when converting to CBE and if we can retain the fact that this was originally a WEF event.

Statistical Data

Unlike CBE, there is currently no data store in TPTP to persist statistical information. There is, however, an initial pass at this code and a model in TPTP in the org.eclipse.tptp.platform.models package, folder srd-dms.

In COSMOS, we do not need to leverage the Eclipse Modeling Framework, and therefore cannot use the existing TPTP statistical model. This model can serve as input and a starting point for a new statistical model that is shared between the two projects. From a COSMOS perspective, this model is what would be instantiated off the wire and persisted in the data store. It would also be the result set of the statistical queries.

Resource Data

In support of the reference implementation of the Service Modeling Language, a set of APIs are being developed to access the information that resides within an Eclipse workspace. These APIs essentially form the basis of an SML based repository. Ali reviewed a design document for bugzilla https://bugs.eclipse.org/bugs/show_bug.cgi?id=179828
During this discussion, there were several significant decisions that were made regarding the work around SML:

1. We validated the need for a repository that contain the descriptions of the resources that we work with. These document will be SML compliant XML.

2. We would like to investigate and work with the CMBDf workgroup to determine if we could apply the forthcoming specification to this work. It is the desire of the COSMOS team to work with and provide input to the CMDBf workgroup and these APIs.

3. We validated the need for a repository outside of the workbench. We would like to use the same API and implementation if possible.
4. The API will be accessible via Web services.

5. It is necessary to have a description of the resource and manageable properties. We will use an XML document that is compliant with SML for this description. This should not be confused with an “SML document” or a “CML resource model”. At this time, these documents are essentially a COSMOS proprietary way of modeling resources.

· Therefore, when we need to describe either a resource or part of our infrastructure, we will “model” only the minimum of what we need. This is a recognition that the CML workgroup is still in its formative stages. The repository will have a predefined notion of topology, machine, os, agents (data collectors) and controller (agent controllers).

· Our intent is to provide input to the CML community by providing tangible use cases.

· We are willing to accept the churn of the format of our documents as CML evolves.

The Most Basic Use Case

Given the “block-i-tecture” above, the team wanted to define the most basic use case supported by COSMOS. Essentially, this is the scenario where a Systems Administrator is browsing their environment for information about a known resource.

Use Case: Browse Resources

Actor: Systems Administrator

1 The Systems Admin opens a web browser and enters the URL of the XML resource repository.

o
A list of resource types that have instances associated with them is returned and displayed in the browser.

2 The Systems Admin selects a resource type, e.g. an application server

o
The repository is queried and a list of the instances is returned

3 The Systems Admin selects an instance, e.g. App Sever 1

o
Information about App Server 1 is retrieved from the XML repository. Its properties and their values are displayed in a simple properties sheet.

o
If there are additional information or reports available for this resource, links are displayed.

4 The Systems Admin selects a report link

o
The report frame on the page is updated with the report.

Valentina

[Who will populate the SML repository]
[Who populates the initial contents of the broker—even if the broker is not exposed]

COSMOS Incorporation By Commercial Vendors

COSMOS is attempting to accomplish two tasks. The first is to provide enough “out of the box” value to be relevant to a systems administrator performing basic systems management. This is essentially an exemplary application of the COSMOS technology. Second, COSMOS will create a set of consumable components that facilitate integration and reuse by other commercial and open source vendors.

When considering the second requirement, it is important to realize that almost all the providers of systems management software have existing data stores for the management data. One goal of the data collection framework is to make the integration of these easy. Figure 2 below illustrates how the environment changes when taking into account existing systems management technologies.

[image: image2.png]Query API

Data Collector

Figure 2

As is often the case, the management data is not consolidated in a single database, but spread across multiple stores. “Resource description” data may also reside in a database instead of well defined XML.

The data within these stores are typically organized in three patterns, hierarchical, table, and graphs. In order to effectively query these different data stores, it becomes important to be able to describe the pattern that the content follows. Essentially, this is a piece of metadata about the contents that can be used for, among other things, structuring queries.

One of the key aspects of the COSMOS projects is its focus on standards. In researching a technique of describing the data, we came across the Statistical Data and Metadata Exchange standard (http://www.sdmx.org/). During a review of the standard, the COSMOS team determined that a complete implementation of the spec is not required. However, there are areas of the spec that can be leveraged as guidance in our implementation. One area is the metadata descriptions.

[image: image3.png]Data Set

Flow

Data Source|

Key Set

Source Type|

Key

Figure 3

Figure 3 illustrates the general scheme of a SDMX data set. The data set is essentially a key that can be interrogated to determine the kind of data that is available that it contains. Where possible, the values of each of the parts of the key will be derived from the XML description documents. For example, the value of Source Type will be a URI, e.g. http://org.apache.applicationServer/tomcat. This value would be the same as the definition namespace in the SML document.

Here are two examples of a complete data set.

[Joel to provide. Make sure to have one with stat data and one without stat data. Stretch goal is one for each kind of data (graph, table, hierarchical.]

Data Source value will be the same as the source component value that is contained in a WEF or CBE. [Joel to expand on this]
By bridging the metadata about the collected information together with the description of the resource, we are able to create a single query strategy that can span multiple data stores.

Chris C. Pls add your rant about industry adoption / agreement on metadata to this section.

Data Query Assemblies

A data query assembly (DQA) is a descriptive way to aggregate a set of Java implementations in a manner that facilitates the retrieval of information. An illustration of this is presented in Figure 4 below.

[image: image4.png]e (O

Data API Services]

Data Query Services]

—
Data
Store

Figure 4

The DQA is divided into two parts, the Data Query Services and the Data API Services.

The data query service is the “engine” that understands the data set (described above) and can use this information to produce a query into the data store. It is important to realize that, although illustrated here, the data store does not have to be a relational data base.

The Data API Services are a set of well defined query interfaces. It is the responsibility of the DAS to formulate the correct data set that is used by the DQS. While one use of the DAS is for convenience, they also serve as an interoperability layer between open source and commercial providers. This promotes the reuse of the components and eases adoption of COSMOS technology.

Each query assembly will have a well defined interface for accepting queries based on data sets. These interfaces will be exposed via a WSDM endpoint. The query assembly will also have its own lifecycle and emit notifications that contain WSDM advertisements.

[Joel: WSDL/XSD/RMD for DQA--bugzilla]

Each query assembly will be contained within a COSMOS data management runtime (DMR). The main purpose of the DMR is simply to hold onto multiple query assemblies and collection assemblies (described later). The DMR also has its own WSDM interface and lifecycle. Figure 5 is an architectural overview of the DMR with a single data query service.

[Joel: WSDL/XSD/RMD for DMR]--bugzilla
[image: image5.png]Data Management Runtime @

Query Assembly

Data API Services

Data Query Services

Figure 5

COSMOS will support the use of APIs at either level of the data query assembly. Interoperability cannot be guaranteed if the APIs at the data query services are used. COSMOS will make every effort to “standardize” through conventional usage the return types and arguments into the data query services layer. It should be noted that all of the APIs will initially be internal and provisional in the initial drivers of COSMOS.

Data Assembly Broker

Inside of the management domain is a data assembly broker (DAB). The role of the DAB is to tie to associate the query assemblies (and collection assemblies) with the data sets. This allows a client to ask the broker for the endpoint of the query service that can satisfy the request for a specific set of information. The data assembly broker is illustrated in Figure 6.

[image: image6.png]o

Data Assembly Broker

DQA

DQA

9| 9| 9©

"

DQA

Figure 6

[Joel to tell me what’s wrong here. Add bullet points, corrections, etc….]

Bootstrapping COSMOS: The Domain Manager

In order to tie all the pieces together, there needs to be a single place for the data collection runtimes and the consumers of COSMOS data together. This is the idea behind the COSMOS Domain Manager (CMD). The CDM is simply a registry with a set of well known entries. Initially, the CMD will contain the EPR of the data assembly broker. It is expected that over time, the CMD will contain a number of well defined services available to the COSMOS system.

[Joel: WSDL/XSD/RMD for DMR]--bugzilla

TO BE DONE

Use Cases Revisited

Data Collection Assemblies

Persistence Framework Discussion

Discussion on Data Visualization

The data visualization web component was demonstrated to show the current capabilities of the user interface

· There was a discussion concerning the entry point of the UI. It was agreed that a browser will be directed to a well known End Point Reference that will provide the UI with the initial visualization model.

· The COSMOS Data Visualization framework will provide a comprehensive set of service interface at three level of abstractions:

· Presentation services – will provide a set of widgets that can be reused to create the cosmos UI console

· Graphical services – will provide a set of services to construct the cosmos UI console. This includes providing the ability to layout widgets within a page, configuring widgets, report deployment services, report viewer service.

· Data Retrieval services - will provide a set of REST handlers and Open Data Access components to read data from a “Helper” APIs provided from the resource model and data collection component

· The demo illustrated the need to create limited, but dynamic user interface. We will define a set of reusable widgets for the COSMOS web UI.

· Navigation tree – the navigation tree will present the user with a set of well-defined resource types. These types include: Machine, OS, Topology, JVM. Each resource in the resource model will be categorized into one of these types. The user will expand the type of resource he/she is interested in and navigate to a particular resource.

· Properties Table – the properties table will show a flatten view of the properties of a resource. This will initially be a table with name value pairs. Certain properties may have special rendering requirements. For example, an “Operation Status” property may be rendered as an icon. Similarly, a property that indicates that a machine has collected data will show a drop down box with available report templates used to visualize the collected data. This requirement requires a style sheet mechanism to associate a property value with a particular visualization.

· There was a discussion concerning the visualization of SML facets. The property table should show a notion of grouping for facets.

· The UI framework should facilitate the special rendering of information based upon a facet. This fosters reuse of visualizations based upon well defined facets.

· BIRT Container – the cosmos web UI will presents reports via the BIRT report viewer. This widget basically delegates the request to the BIRT Report Viewer WAR and presents the response in the COSMOS web UI.

· Report Selector – a widget is needed to present the user with a list of available reports for a specific type of data. For example, The Top 10 CBE report only pertains to Common Base Event data. Similarly, the statistical report only visualizes statistical data.

· There is a level of indirection between the reports and the information in the resource. The determination of if a report is able to be run is based on a declared set of information declared by the resource.

· There were several issues surrounding the Reporting System.

· It was agreed that reports will be created using BIRT tooling

· We will integrate with the BIRT Report Viewer that is released with BIRT to process report templates

· A deployment service is needed to register a report template with a particular data collection type. Eventually a user interface is required to manage this registration.

· The report templates will bind to an Open Data Access object that will utilize the data collection query layer to access the data collection repository.

· Currently these data collection query layer is composed of OSGI bundles. We will deploy the data collection OSGI bundles in the BIRT report viewer OSGI container.

· We all agreed that the data collection layer works in a non-OSGI environment post COSMOS 1.0

· A concern was raised that the set of existing reports are not overly useful. We have an action item to come up with better reports surrounding resource management.

· The deployment architecture for the COMOS UI was discussed

· The COSMOS UI will be composed of two WAR applications. One WAR will consist of the COSMOS web UI while the second WAR will consists of the Report component.

· It was agreed that the COSMOS Web UI will utilize DOJO widget to create a set of rich widgets. The DOJO sub/pub model will be used to communicate between widgets. These widgets will consume JSON data structures produced by REST handlers. That is each DOJO widget will be associated with a particular REST handler.

· A Representational State Transfer (REST) architecture will be implored REST handlers will be implemented as servlets that will be deployed in a J2EE container. The following are set of REST handlers that we have defined:

· Resource Navigator – handler to service the tree navigation. This handler will bind to the resource model repository layer. The resource model repository layer will provide common interfaces that represent resource types such as Machines, Topology, Operating Systems, etc. These interfaces will provide helper functions to get properties on the resource and child relationships. For example, an API on the machine interface will provide an API to get the list of operating systems.

· Resource Property Handler – handler to service the properties table. The handler will receive a context id that will identify the resource being visualized. This context id will be sent to the resource model repository layer to retrieve the properties that are associated with the resource.

· Widget Style Handler – this handler will read a XML file that contains configuration information for a set of widgets. Configuration information such as the rest URL to associate with a widget, width, height etc.

· Widget Registry Handler – this handler will read a XML file that associates a widget visualization with a tag name. The idea is that any property tagged with a certain name will be visualized using the associated widget.

· Report Deployment Handler – this handler will read a list of available reports for a particular data collection type

· In summary the COSMOS UI will be composed of a set of DOJO widgets that communicate with servlets via JSON.

· PHP was evaluated, and removed from consideration for the following reasons:

· The data collection and resource model layers are java based and require J2SE or J2EE. Using Java simplified the deployment topology by not requiring a PHP server and eased the security, deployment and scalability concerns.

· Using the same implementation language as the data collection simplified the end-to-end programming model, eliminating the integration issues with a php-java bridge,

· We agreed that the data collection layer would provide “helper” APIs to get a list of CBEs and statistical data. These APIs will return a list of CBEs or statistical observations based on a filtering or grouping criteria.

· These APIs would be agreed upon by the project team in order to facilitate interoperability between COSMOS and commercial adoption.

· The UI should also be quite extensible to allow exploiter to modify the look and fell of the UI. This is further explained in the design document at http://wiki.eclipse.org/index.php/CosmosDataReportingComponent. Refer to the “Extending the User Interface” section.

Release Engineering Discussion

We had discussed the work items a release engineering team should be responsible for delivering with the goal of identifying the amount of resources required to successfully support the COSMOS development team.

The release engineering work is critical for the success of the project as a whole since we depend on it for making our work available to the end user and for integrating with other projects. Each component lead is responsible for working with the release engineering team to create the set of build scripts, packaging, etc. required to get their code into the driver.

Without a well established build and release process, that ensures the production of high quality software, COSMOS will be unable to graduate to a top level project. Based on Hubert’s experience as a release engineering team lead for TPTP and his current support on the COSMOS project release engineering work, he identified a list of items this team should be responsible for delivering.

The following items are the overall responsibility of the release engineering team. This list is based on the things that were required during the COSMOS iteration process. Many of these steps can be automated based on existing scripts. Some of these steps have not been completed as of yet because of the resource constraints on the project.

1 Manage the build process

o
Monitor the status of builds.


Notify developers of broken builds. Note: The COSMOS team needs to establish its process for handling broken builds.

o
Work with the component teams to incorporate build script changes based on new requirements, new features, et.

o
Publish builds to eclipse and/or the update mangaer site.

o
Administer and maintain build machines. This may involve managing user accounts, disk space, security patches, removing unused builds, adding harddrives, etc.

o
Produce and publish build reports, including errors and hygiene reports (see below)

2 Coordinate all the build related work with other Eclipse projects
(Orbit, Europa, et.)

o
Make sure the right platform is used for build

o
Use the right common components from Orbit

o
Be the focal point in COSMOS for packaging related problems (the rel eng team should know if a common component is already available in Orbit, should know what platform level we should run against, what jre level, etc)

o
Attend Europa and Orbit meetings and represent COSMOS

3 Ensure software delivery

o
Establish and maintain software download site

o
Establish and maintain Eclipse update manager support

4 Iteration test support

o
test pass settings (candidate build, announce new candidate builds, build related announcements, patching the build)

o
test pass reports and test coverage statistics

o
settings machines for testing if special configurations are required

5 Maintain project hygiene

o
Identify code with invalid/missing

o
Identify plugin with missing/incorrect versions

o
Identify internal API usage

o
Ensure the proper license files are included

o
Identify invalid dependencies, e.g. external code libraries not approved by the eclipse IP process

6 Manage Eclipse infrastructure

o
COSMOS committer access management:


coordinate with the eclipse system admin to make changes to the CVS access control.

o
Bugzilla management:


adding new components and changing default buzilla component owners. (Project lead can delegate the build team to do this task.)

o
CVS administriative tasks:


removing/moving files, creating branches, etc.


creating new branches and set up the build scripts to build on the new branch for each new release

After these tasks were outlined, the team made the following decisions:

1 The component owners are responsible for working with the build team to ensure their code is included properly in the release engineering process. This includes creating the initial build scripts, et.

2 The build team must be made up of representatives from different companies.

3 The initial team will be made up of Joel and Hubert. CA will begin contributing to this team and the target is for them to be up to speed and in a position to lead this team by the end of June.

In order to get started immediately, the team at the face to face also outlined an initial set of deliverbles and action items for the release engineering team.

1 Identify the build required build infrastructure

o
Investigate the possibility to do the build on an eclipse server.
(The build is currently done in IBM. Builds are uploaded to eclipse for public consumption.)


create a web dash board/report for viewing build status, build log files, starting builds, etc.

2 Create SDK packages with source plugins generated.

3 Sign jar files for nightly builds

4 Run pack200 on all class files for better compression results.

5 Start generating reports on the build
(potential reuse of tools from TPTP project)

o
CVS activity report (commits done between builds)

o
Bugzilla activities between builds (need to define a format for writing CVS commit comments)

o
 Report on files that miss copyright statements, wrong copyright years, and files that contain non-EPL copyright statements

o
report on classes that use internal packages of other projects

o
Report on version number of each plugin and compare with the previous release. Indicate which plugins have changed since the previous release and require a change in version number.

o
Generate reports on plugin dependencies, feature structures, etc.

6 Create an update site for the project, write scripts for maintaining/updating the update site.

It is recognized that the release engineering team will need to have a broad set of skills. While not everyone on the team posses these skills immediately, it is expected that they can come up to speed over time. The skills identified to be required for the release engineering team are:

1 Ant scripts, php

2 Eclipse skills (required to create and update feature content, test Update Manager, branch CVS for new releases, give CVS access, etc)

3 Plugin development knowledge – it may be required to update plugin version numbers in the Manifest.mf, update build.properties file, etc

Plan Update

As a result of the face to face, several new enhancements have been opened in bugzilla to track the work.

Here are links to those items:

	ID
	Sev
	Pri
	Assignee
	Summary

	188406
	nor
	P3
	don.ebright@compuware.com
	Remove dependency on JPA

	188387
	enh
	P3
	don.ebright@compuware.com
	Support for the Java client interface of the TPTP RAC

	188390
	enh
	P3
	don.ebright@compuware.com
	Support for Nagios agents in data collection

	188399
	enh
	P3
	amehrega@ca.ibm.com
	Query component for SML documents based on xpath

	188401
	enh
	P3
	don.ebright@compuware.com
	Provide a data source for SNMP traps

	188405
	enh
	P3
	don.ebright@compuware.com
	Data source for TPTP log agent

Sections Pending

Management Enablement

Open Issues

Thoughts / requirements on security

